

From Pixels to Buildings: End-to-end Probabilistic Deep Networks for Large-scale **Semantic Mapping**

Kaiyu Zheng^{1*}, Andrzej Pronobis^{2,3}

¹Brown University ²University of Washington ³KTH Royal Institute of Technology

*work done while studying at ²UW

IROS 2019

Motivation: Semantic Mapping

Mapping

• Spatial knowledge exists at **Building/Floor** • Different spatial scales Places Objects

YCB dataset [Calli et al, 2015]

From Pixels to Buildings: End-to-end Probabilistic Deep Networks for Large-scale Semantic Mapping

- Spatial knowledge exists at
 - Different **spatial scales**
 - Multiple levels of abstraction

Local, Partial laser-range observations with Noisy occupancy

From Pixels to Buildings: End-to-end Probabilistic Deep Networks for Large-scale Semantic Mapping Credit of Images: Kousuke Ariga

- Spatial knowledge exists at
 - Different spatial scales
 - Multiple levels of abstraction
- Sensory observations are
 - Local, Partial, Noisy
- Relationships in human world are
 - Complex, Noisy

Complex: Large number of connections

From Pixels to Buildings: End-to-end Probabilistic Deep Networks for Large-scale Semantic Mapping

- Spatial knowledge exists at
 - Different spatial scales
 - Multiple levels of abstraction
- Sensory observations are
 - Local, Partial, Noisy
- Relationships in human world are
 - Complex, Noisy

Complex: Large number of connections **Noisy:** Variability across floors/runs

Topological graph constructed on the same floor in two runs.

- Spatial knowledge exists at
 - Different spatial scales
 - Multiple levels of abstraction
- Sensory observations are
 - Local, Partial, Noisy
- Relationships in human world are
 - Complex, Noisy
- Agent operates in **new** environments
 - Vary in scale and structure
 - Reason about unexplored places

Semantic Mapping: Desired Properties

- A. Captures spatial scales and abstractions
- B. Is probabilistic, captures uncertainty
- C. Allows real-time, efficient inference
- D. Leverages relationships between spatial concepts to
 - Improve robustness
 - resolve ambiguities
 - predict latent information (e.g. about unexplored places)

Existing Work: Robotics

Structured prediction in semantic mapping

• Assembly of independent components

(e.g. Conditional Random Field + CNN)

- Bottleneck in communication between components
- Cannot be learned end-to-end
- Approximate inference for graphical models
 - Convergence issues
- Unable to reason about unexplored space

Our method doesn't require segmentation, or room/door detection

[Mozos et al. 2007] [Pronobis et al. 2012]

[Friedman et al. 2007]
2] [Sünderhauf et al 2015] 10
[Brucker et al. 2018]

Existing Work: Computer Vision

Deep structured prediction approaches

(e.g. image generation, semantic segmentation)

- Fixed number of variables
- Static global structure
- Some not probabilistic

[Wu et al.'16][Mahmood et al.'19] [Chen et al.'18][Schwing & Urtasun,'15] [Belanger & McCallum,'16] [Shelhamer et. al.'16]

TopoNets: Overview

- Take-away I : End-to-end Unified Deep Probabilistic Spatial Model
- Take-away II: Tractable Exact Inference (real time)
- Take-away III: Template-based method
 - Learn template networks during training
 - Instantiate complete network while to infer semantics for any test environment
 - Pr(semantics (**Y**), geometry (**X**) | topology)

Take-away I : End-to-end Unified Deep Probabilistic Spatial Model

Take-away I : End-to-end Unified Deep Probabilistic Spatial Model

Take-away II: Tractable Exact Inference

TopoNets: Sum Product Networks

Sum-Product Networks, a recent deep architecture

- Solid theoretical foundations [Poon&Domingos'11] [Gens&Domingos'12] [Peharz et al.'17]
 - Learn conditional or joint distributions
 - Tractable partition function, exact inference
- Applied in a variety of problems (vision, NLP, robotics etc.)
- Viewed in 2 ways:
 - Graphical model
 - Deep architecture
- Structure semantics:
 - Hierarchical mixture of parts

From Pixels to Buildings: End-to-end Probabilistic Deep Networks for Large-scale Semantic Mapping

Input Variables

Refer to [van de Wolfshaar and Pronobis 2019] for convolutional representations of visual/spatial data. url: <u>https://arxiv.org/pdf/1902.06155.pdf</u>

Take-away III: Template-based method

Learn template networks during training

Take-away III: Template-based method

• Instantiate complete network to infer semantics of any test environment

TopoNets: Recap of Merits

- Builds a **unified deep** model (an SPN) instead of an assembly of independent models
 - Can be **learned end-to-end** from robot sensor input
- Template-based method
 - Adapts to different environments
- Tractable, exact inference (real-time)
 - Theoretically guaranteed thanks to Sum-Product Networks
- Fully probabilistic and generative
 - Can detect novel semantic maps to trigger additional learning

From Pixels to Buildings: End-to-end Probabilistic Deep Networks for Large-scale Semantic Mapping

1 Q Global

Experiments

Experiments: Inference Tasks

Task 1: Semantic place classification (accuracy) $\hat{y}_{explored} = \operatorname{argmax}_{y_{explored}} P(y_{explored} | x)$

Task 2: Inferring placeholders (unexplored) (accuracy of placeholders) $\hat{y}_{explored}$, $\hat{y}_{unexplored}$

 $= \operatorname{argmax}_{y_{unexplored}} P(y_{explored}, y_{unexplored} | x)$ y_{explored}

Task 3: Novelty detection (ROC curve) $\sum_{y_{explored}} P(y_{explored}, x) > threshold$

From Pixels to Buildings: End-to-end Probabilistic Deep Networks for Large-scale Semantic Mapping

Experiments: Dataset

- Collected by a mobile robot
 - 32 semantic maps on 4 floors
 - Built from laser-range and odometry data
- Two experimental setups (6 or 10 semantic clases)

- Cross-validation:
 - Trained on data from 3 floors
 - **Tested** on data from **remaining floor**

Experiments: Baseline

An assembled approach consisting of

- SPN-based Local Place Classifier
- Markov Random Field (MRF)
- Similar to [Pronobis et al. 2012]
 - Markov Random Field + door detector + SVM

Experiments: Semantic Place Classification

Task 1: Semantic place classification $\hat{y}_{explored} = \operatorname{argmax}_{y_{explored}} P(y_{explored} | x)$

Our approach **consistently** improves classification accuracy and disambiguates semantic information.

	#alassas	Local		Local + MRF		TopoNet	
	#Classes	avg.	std.	avg.	std.	avg.	std.
Overall	6	95.96%	2.83%	95.47%	3.00%	96.91%	2.04%
	10	79.06%	6.45%	75.15%	9.34%	80.14%	6.35%
456-7	6	95.22%	1.70%	96.35%	2.68%	97.50%	1.11%
	10	73.48%	1.92%	68.03%	4.55%	74.69%	2.73%
457-6	6	96.75%	1.98%	93.87%	2.24%	97.39%	1.25%
	10	81.49%	1.93%	81.63%	6.90%	82.55%	1.37%
467-5	6	92.70%	1.52%	95.66%	3.14%	94.46%	1.62%
	10	73.41%	2.06%	66.63%	5.38%	74.58%	2.48%
567-4	6	99.16%	0.94%	96.00%	3.21%	98.30%	1.64%
	10	87.88%	2.83%	84.31%	1.56%	88.73%	2.35%

Semantic Place Classification

Experiments: Inferring placeholders (unexplored)

Task 2: $\hat{y}_{explored}$, $\hat{y}_{unexplored}$ = argmax $y_{unexplored} P(y_{explored}, y_{unexplored} | x)$ $y_{explored}$

Our approach **significantly** outperforms the baseline on this task.

Placeholder Inference						
	#classes	Local + MRF		TopoNet		
	#CIASSES		std.	avg.	std.	
Overall	6	91.16%	8.27%	94.46%	7.35%	
Overall	10	60.45%	9.84%	64.49%	10.11%	
156 7	6	94.07%	5.65%	99.46%	1.44%	
430-7	10	57.94%	3.33%	70.24%	10.18%	
157 6	6	79.77%	6.49%	83.29%	4.26%	
437-0	10	61.62%	9.48%	61.30%	4.83%	
167 5	6	94.72%	3.48%	96.35%	3.62%	
407-5	10	50.50%	5.48%	54.48%	3.38%	
567 /	6	96.09%	3.50%	98.75%	3.31%	
507-4	10	71.72%	4.78%	71.94%	8.45%	

Experiments: Novelty Detection

Task 3: Novelty detection $\sum_{y_{explored}} P(y_{explored}, x) > threshold$

85-90% True Positive, 10-15% False Negative.

True positive: Semantic map is novel, classified as novel

False positive:

Semantic map is NOT novel, classified as novel

Experiments: Performance

- Each local laser range observation:
 - 1176 pixels, each 3 possible values
 - >3500 indicator variables
- Topological graph size: ~100-150 nodes
- NVidia GeForce 1080Ti, LibSPN library [Pronobis et al.'17]

size	TopoNets	Base line
105	0.36s	> 45s
155	0.49s	

Worst case run time (empirical), 10 class setup (Evaluate P(**X**, **Y**), for 30 random different **Y** settings)

TopoNets infers in real-time, while MRF suffers from convergence issues

Summary

- Take-away I : End-to-end Unified Deep Probabilistic Spatial Model
 - Builds a **unified deep** model (a SPN) that can be **learned end-to-end**
 - Fully probabilistic and generative
 - Capable to **detect novel** semantic maps
- Take-away II: **Tractable**, **exact inference** (real-time)
 - Theoretically guaranteed thanks to Sum-Product Networks
- Take-away III: Template-based method
 - Adapts to different environments

Summary

- TopoNets introduce novel, probabilistic deep learning techniques to robotics
- Ideal model for partially-observable planning in large, unknown environment

Video link

https://www.youtube.com/watch?v=luv2XpaHeTU

From Pixels to Buildings: End-to-end Probabilistic Deep Networks for Large-scale Semantic Mapping

References

- [Calli et al. 2015] Benchmarking in Manipulation Research: The YCB Object and Model Set and Benchmarking Protocols
- [Pronobis 2011] Semantic mapping with mobile robots
- [Mozos et al. 2007] Supervised semantic labeling of places using information extracted from sensor data
- [Friedman et al. 2007] Voronoi random fields : Extracting the topological structure of indoor environments via place labeling
- [Brucker et al 2018] Semantic labeling of indoor environments from 3d rgb maps
- [Wu et al. 2016] Deep markov random field for image modeling
- [Mahmood 2019] Structured prediction using cgans with fusion discriminator
- [Chen et al 2018] Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRF
- [Schwing et al 2015] Fully connected deep structured network
- [Belanger and McCallum 2016] Structured prediction energy networks
- [Pronobis et al ICAPS Workshop'17] Deep spatial affordance hierarchy: Spatial knowledge representation for planning in large-scale environments
- [Peharz et al 2017] On the latent variable interpretation in Sum-Product network
- [Poon and Domingos 2011] Sum-product networks: A new deep architecture
- [Gens and Domingos 2012] Discriminative learning of sum-product networks
- [Pronobis et al 2010] Semantic Modeling of Space
- [Zheng et al. 2018] Learning Graph-Structured Sum-Product Networks for Probabilistic Semantic Maps
- [van de Wolfshaar and Pronobis 2019] Deep Generalized Convolutional Sum-Product Networks for Probabilistic Image Representations
- [Sünderhauf et al 2015] Place Categorization and Semantic Mapping on a Mobile Robot

