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Motivation: Semantic Mapping
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Semantic Mapping: Challenges
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Objects

Building/Floor

YCB dataset [Calli et al, 2015] 

• Spatial knowledge exists at

• Different spatial scales

Places



• Spatial knowledge exists at

• Different spatial scales

• Multiple levels of abstraction
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Semantic Mapping: Challenges
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• Spatial knowledge exists at

• Different spatial scales

• Multiple levels of abstraction

• Sensory observations are

• Local, Partial, Noisy
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Semantic Mapping: Challenges

Local, Partial laser-range observations with Noisy occupancy

Credit of Images: Kousuke Ariga



• Spatial knowledge exists at

• Different spatial scales

• Multiple levels of abstraction

• Sensory observations are

• Local, Partial, Noisy

• Relationships in human world are

• Complex, Noisy

Complex: Large number of connections
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Semantic Mapping: Challenges

                       

Ours
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• Spatial knowledge exists at

• Different spatial scales

• Multiple levels of abstraction

• Sensory observations are

• Local, Partial, Noisy

• Relationships in human world are

• Complex, Noisy

Complex: Large number of connections

Noisy: Variability across floors/runs

7From Pixels to Buildings: End-to-end Probabilistic Deep Networks for Large-scale Semantic Mapping

Semantic Mapping: Challenges

Ours

Prior work

Topological graph 

constructed on the 

same floor in two runs.



• Spatial knowledge exists at

• Different spatial scales

• Multiple levels of abstraction

• Sensory observations are

• Local, Partial, Noisy

• Relationships in human world are

• Complex, Noisy

• Agent operates in new environments

• Vary in scale and structure

• Reason about unexplored places
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Semantic Mapping: Challenges
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Semantic Mapping: Desired Properties

A. Captures spatial scales and abstractions

B. Is probabilistic, captures uncertainty

C. Allows real-time, efficient inference

D. Leverages relationships between spatial concepts to

• Improve robustness

• resolve ambiguities

• predict latent information (e.g. about unexplored places)
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Structured prediction in semantic mapping

• Assembly of independent components

(e.g. Conditional Random Field + CNN)
• Bottleneck in communication between components

• Cannot be learned end-to-end

• Approximate inference for graphical models
• Convergence issues

• Unable to reason about unexplored space

Our method doesn’t require segmentation, or room/door detection

[Mozos et al. 2007] [Friedman et al. 2007]

[Pronobis et al. 2012] 10
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[Brucker et al. 2018]

Existing Work: Robotics

[Sünderhauf et al 2015] 



Deep structured prediction approaches 

(e.g. image generation, semantic segmentation)

• Fixed number of variables 

• Static global structure 

• Some not probabilistic
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Existing Work: Computer Vision

[Wu et al. ‘16][Mahmood et al. ‘19]

[Chen et al.’18][Schwing & Urtasun,’15] 

[Belanger & McCallum,’16]

[Shelhamer et. al. ‘16]



• Take-away I : End-to-end Unified Deep Probabilistic Spatial Model

• Take-away II: Tractable Exact Inference (real time)

• Take-away III: Template-based method

• Learn template networks during training

• Instantiate complete network while to infer semantics for any test environment

• Pr(semantics (Y), geometry (X) | topology)
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TopoNets: Overview
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TopoNets

Take-away I : End-to-end Unified Deep Probabilistic Spatial Model
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TopoNets

Take-away I : End-to-end Unified Deep Probabilistic Spatial Model
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TopoNets

Take-away II: Tractable Exact Inference



Sum-Product Networks, a recent deep architecture

• Solid theoretical foundations

• Learn conditional or joint distributions

• Tractable partition function, exact inference

• Applied in a variety of problems (vision, NLP, robotics etc.)

• Viewed in 2 ways: 

• Graphical model

• Deep architecture

• Structure semantics: 

• Hierarchical mixture of parts

[Poon&Domingos’11] [Gens&Domingos’12] [Peharz et al.’17]

Latent Variable

Input Variables
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TopoNets: Sum Product Networks
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TopoNets

Take-away III: Template-based method
• Learn template networks during training

Refer to [van de Wolfshaar and Pronobis 2019] for 

convolutional representations of visual/spatial data.

url: https://arxiv.org/pdf/1902.06155.pdf

https://arxiv.org/pdf/1902.06155.pdf
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TopoNets

Take-away III: Template-based method
• Instantiate complete network to infer semantics of any test environment



• Builds a unified deep model (an SPN) instead of an assembly 
of independent models
• Can be learned end-to-end from robot sensor input

• Template-based method
• Adapts to different environments

• Tractable, exact inference (real-time)
• Theoretically guaranteed thanks to Sum-Product Networks

• Fully probabilistic and generative
• Can detect novel semantic maps to trigger additional learning
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TopoNets: Recap of Merits



From Pixels to Buildings: End-to-end Probabilistic Deep Networks for Large-scale Semantic Mapping 20

Experiments



Task 1:  Semantic place classification (accuracy)
ෝ𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 = argmax𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 𝑃(𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑|𝒙)

Task 2: Inferring placeholders (unexplored) (accuracy of placeholders)
ෝ𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑, ෝ𝒚𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑

= argmax 𝒚𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑
𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑

𝑃 𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 , 𝒚𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 𝒙

Task 3: Novelty detection (ROC curve)

σ𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 𝑃 𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 , 𝒙 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
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Experiments: Inference Tasks



• Collected by a mobile robot
• 32 semantic maps on 4 floors

• Built from laser-range and odometry data

• Two experimental setups (6 or 10 semantic clases)

• Cross-validation:
• Trained on data from 3 floors

• Tested on data from remaining floor

Experiments: Dataset
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An assembled approach consisting of

• SPN-based Local Place Classifier

• Markov Random Field (MRF)
• Similar to [Pronobis et al. 2012]

• Markov Random Field + door detector + SVM
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Experiments: Baseline



Experiments: Semantic Place Classification

Task 1:  Semantic place classification

ෝ𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 = argmax𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 𝑃(𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑|𝒙)
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Our approach consistently improves classification accuracy and 

disambiguates semantic information.



Task 2: ෝ𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑, ෝ𝒚𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑
= argmax 𝒚𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑

𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑

𝑃 𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 , 𝒚𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 𝒙
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Experiments: Inferring placeholders (unexplored)

Our approach significantly outperforms the baseline on this task.
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True positive: 

Semantic map is novel, 

classified as novel

False positive:

Semantic map is NOT novel, 

classified as novel

Experiments: Novelty Detection

6 class 10 class

85-90% True Positive, 10-15% False Negative.

Task 3: Novelty detection

σ𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 𝑃 𝒚𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 , 𝒙 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑



• Each local laser range observation:

• 1176 pixels, each 3 possible values

• >3500 indicator variables

• Topological graph size: ~100-150 nodes

• NVidia GeForce 1080Ti, LibSPN library [Pronobis et al.’17]
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Experiments: Performance

Worst case run time (empirical), 10 class setup

size TopoNets Base line

105 0.36s > 45s

155 0.49s

TopoNets infers in real-time, while MRF suffers from convergence issues

(Evaluate P(X,Y), for 30 random different Y settings)



• Take-away I : End-to-end Unified Deep Probabilistic Spatial Model

• Builds a unified deep model (a SPN) that can be learned end-to-end

• Fully probabilistic and generative

• Capable to detect novel semantic maps

• Take-away II: Tractable, exact inference (real-time)
• Theoretically guaranteed thanks to Sum-Product Networks

• Take-away III: Template-based method
• Adapts to different environments

Summary
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• TopoNets introduce novel, probabilistic deep learning 
techniques to robotics

• Ideal model for partially-observable planning in large, 
unknown environment
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Summary



Video link

https://www.youtube.com/watch?v=luv2XpaHeTU
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https://www.youtube.com/watch?v=luv2XpaHeTU
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