Learning Semantic Maps with Topological Spatial Relations **TA7 Using Graph-Structured Sum-Product Networks** UNIVERSITY of WASHINGTON Kaiyu ZHENG, Andrzej PRONOBIS, Rajesh RAO

I. Overview

Motivation

- Real-world graph-structured data:
 - Complex, noisy, and dynamic (of varying size)
 - Example: topological graphs built from robot sensory data
- Yet, traditional structured-prediction:
 - Places strict constraints on variable interactions
 - Requires fixed number of variables
 - Requires static global structure

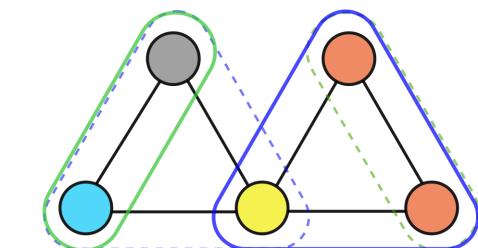
Contributions

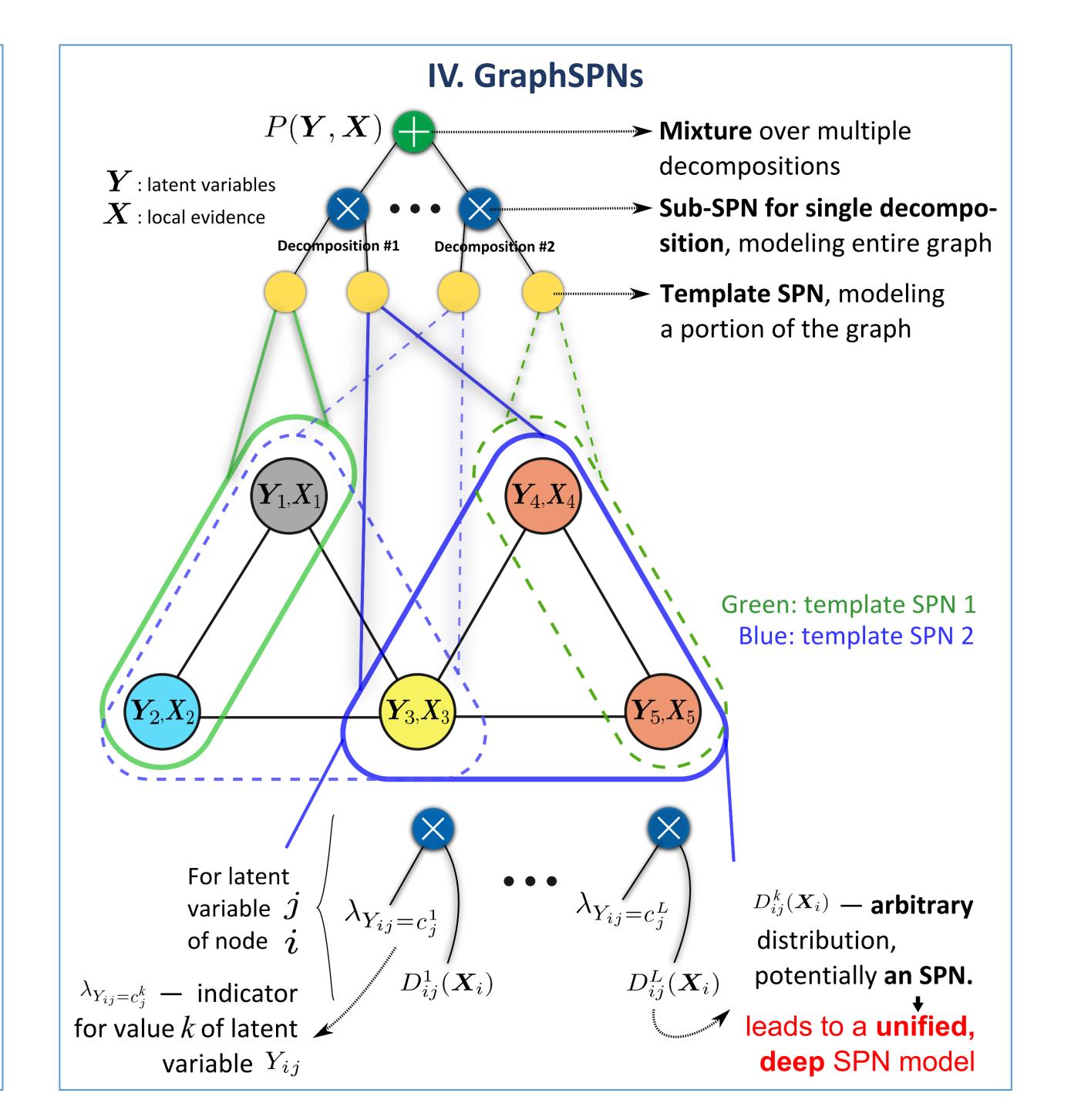
• Graph-Structured Sum-Product Networks

III. Semantic Maps

- Topological graphs anchoring local \bullet semantic information
- Dynamic: expands during world exploration \bullet
- **Nodes** represent places
 - with local semantic evidence
- **Placeholders** are unexplored places – with no evidence
- **Edges** indicate navigability & spatial relations

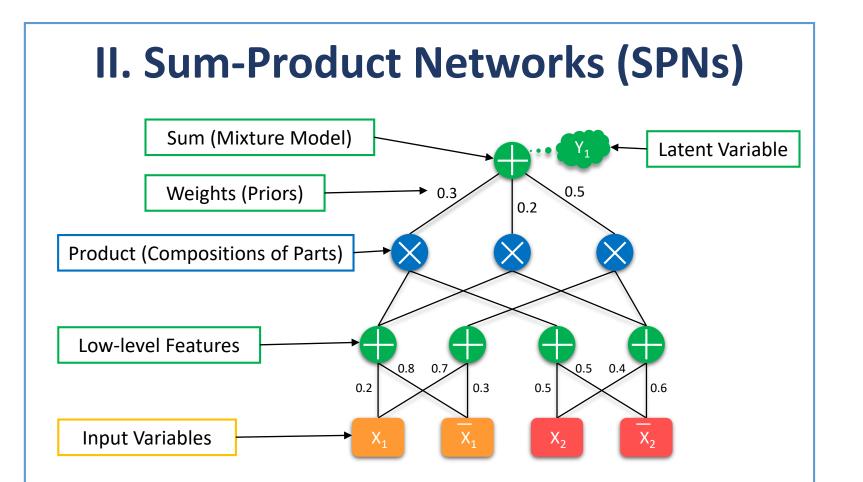
Example for a doorway connecting 2 rooms

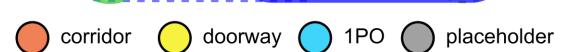




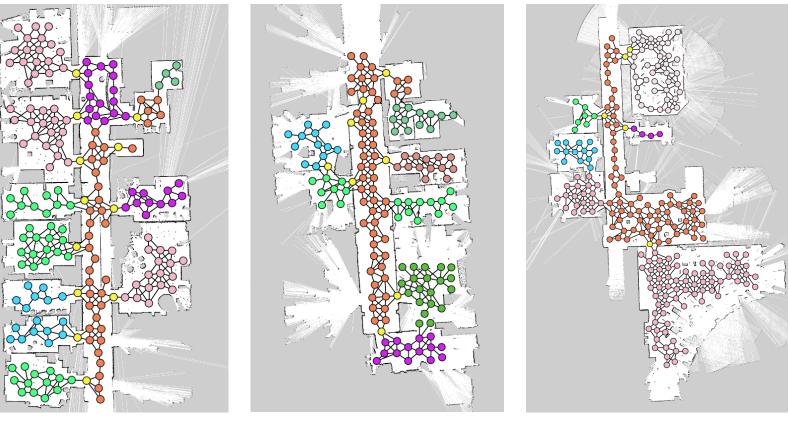
(GraphSPNs):

- Learn deep probabilistic models of graph-structured data
- Capture complex, noisy variable dependencies
- Handle dynamic graphs with varying number of variables
- Leverage Sum-Product Networks (SPNs)
- Learned models of **global semantic maps** \bullet with topological spatial relations
 - Disambiguate uncertain semantics based on noisy spatial relations
 - Infer semantic descriptions for unexplored places
 - Detect novel environment structure





Real-world semantic maps



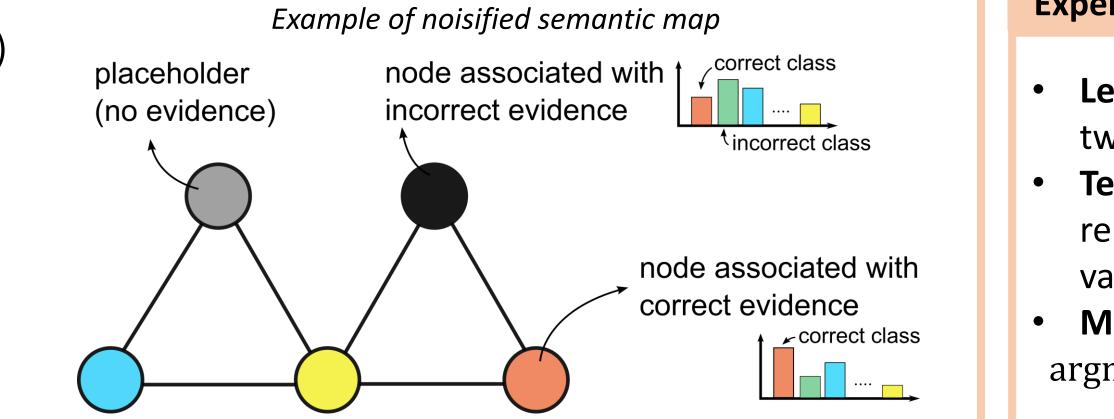
Makov Random Fields GraphSPN **V. Experimental Setup** • Graphs partitioned using Dataset MRF structure follows templates: graph structure 0-0-0 • $D_i^k(X_i)$ defined over 99 topological graphs on 2-node template 1-node templat MRF-2: pairwise 9 **11 floors** of **3 buildings** in single hypothetical potentials different cities: binary observation x_i MRF-3: 3-variable O Freiburg, Germany (assume observed): potentials 5-node template Saarbrücken, Germany Template SPNs trained on $D_i^k(X_i) = \begin{cases} \alpha_i^k & X_i = x_i \\ 1 - \alpha_i^k & X_i = \bar{x}_i \end{cases}$ Local evidence: Stockholm, Sweden corresponding sub-graphs $\phi_i(Y_i = c^k) = \alpha_i^k$ 5 decompositions used **10 semantic classes** per place

Experimental Procedure

- New **deep probabilistic** architecture with \bullet solid theoretical foundations (Poon&Domingos UAI'11)
- Can be viewed as: deep architecture and graphical model
- Learn conditional or joint distributions •
- **Tractable** partition function, exact inference
- **Structure semantics**: hierarchical mixture of parts

• Each node associated with one latent variable Y_i (semantic class)

- Introducing **noise**:
 - **20%** of nodes associated with incorrect evidence
- Varying levels of uncertainty about semantic information



- **Learning**: all graphs from two buildings
- **Testing**: graphs from remaining building with various levels of noise
- Marginal inference: $\operatorname{argmax}_{k} P(Y_{i} = c^{k} | \mathbf{X} = \mathbf{X})$

VI. Experimental Results

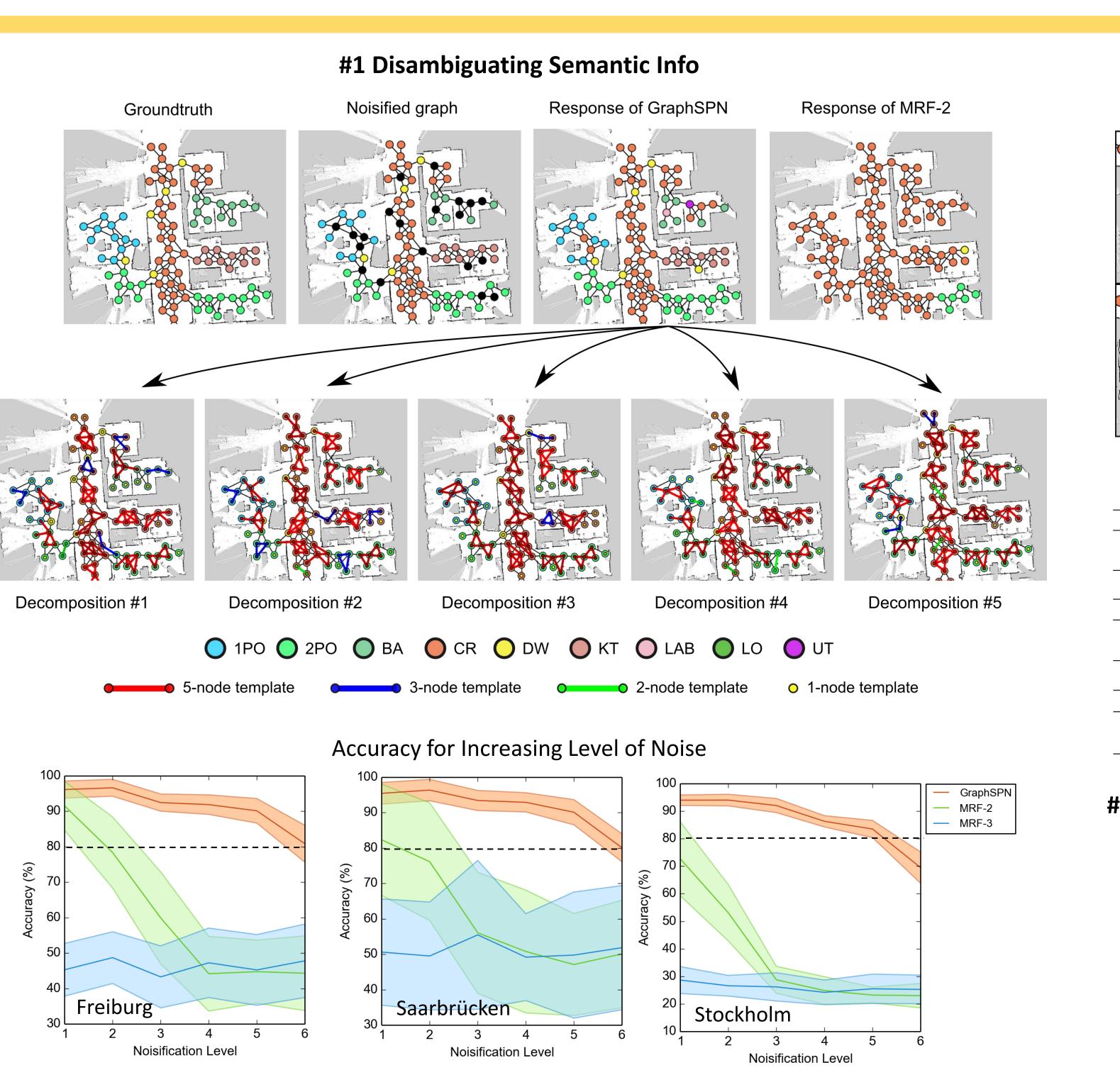
Experiments

#1: Disambiguate Semantic Info

- Noisified graphs
- No placeholders
- Accuracy = percent of correctly classified nodes in the graphs

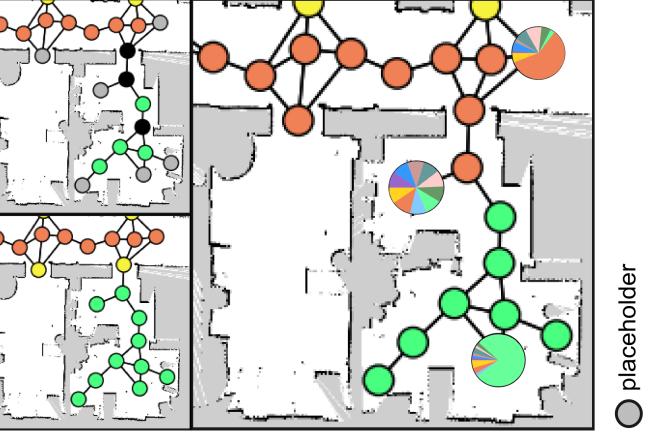
#2: Infer Placeholder Semantics

Noisified graphs



#2 Infer placeholder semantics

Marginal Inference Over Placeholder Class



- With placeholders
- Accuracy = percent of correctly classified placeholders in the graphs

#3: Novel Structure Detection

- No noisification $(X = \emptyset)$
- No placeholders •
- Simulating world structure changes by swapping evidence
 - DW and CR, CR and 1PO (novel)
 - 1PO and 2PO (normal) \bullet
- Structure is novel if: • P(Y = y) < threshold
- Novelty detection by thresholding likelihood normalized by graph size

