
• Graphs partitioned using 
templates:

• Template SPNs trained on 
corresponding sub-graphs

• 5 decompositions used

VI. Experimental Results

V. Experimental Setup
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I. Overview

Motivation
• Real-world graph-structured data:

• Complex, noisy, and dynamic
(of varying size)

• Example: topological graphs
built from robot sensory data

• Yet, traditional structured-prediction:
• Places strict constraints on

variable interactions
• Requires fixed number of variables
• Requires static global structure

IV. GraphSPNsIII. Semantic Maps

• Topological graphs anchoring local
semantic information

• Dynamic: expands during world exploration
• Nodes represent places

― with local semantic evidence
• Placeholders are unexplored places

― with no evidence
• Edges indicate navigability & spatial relations

#1 Disambiguating Semantic Info

Freiburg Saarbrücken Stockholm

II. Sum-Product Networks (SPNs)

Contributions
• Graph-Structured Sum-Product Networks 

(GraphSPNs):
• Learn deep probabilistic models of 

graph-structured data
• Capture complex, noisy

variable dependencies
• Handle dynamic graphs with

varying number of variables
• Leverage Sum-Product Networks (SPNs)

• Learned models of global semantic maps 
with topological spatial relations
• Disambiguate uncertain semantics 

based on noisy spatial relations
• Infer semantic descriptions

for unexplored places
• Detect novel environment structure

Example for a doorway connecting 2 rooms

#2 Infer placeholder semantics

#3 Novel structure
detection

#1: Disambiguate Semantic Info
• Noisified graphs
• No placeholders
• Accuracy = percent of correctly 

classified nodes in the graphs

#2: Infer Placeholder Semantics
• Noisified graphs
• With placeholders
• Accuracy = percent of correctly 

classified placeholders
in the graphs

#3: Novel Structure Detection
• No noisification (𝑿 = ∅)
• No placeholders
• Simulating world structure 

changes by swapping evidence
• DW and CR, CR and 1PO (novel)
• 1PO and 2PO (normal)

• Structure is novel if:
𝑃 𝒀 = 𝒚 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• Novelty detection by thresholding 
likelihood normalized by graph size

Dataset

Experiments

Accuracy for Increasing Level of Noise

Marginal Inference Over Placeholder Class

ROC curve

Accuracy for Different Levels of Noise
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• New deep probabilistic architecture with 
solid theoretical foundations (Poon&Domingos UAI’11)

• Can be viewed as:
deep architecture and graphical model

• Learn conditional or joint distributions
• Tractable partition function,

exact inference
• Structure semantics: 

hierarchical mixture of parts

Real-world semantic maps

• 99 topological graphs on
11 floors of 3 buildings in 
different cities:
• Freiburg, Germany
• Saarbrücken, Germany
• Stockholm, Sweden

• 10 semantic classes per place

• Each node associated with one 
latent variable 𝑌𝑖 (semantic class)

• Introducing noise:
• 20% of nodes associated with 

incorrect evidence
• Varying levels of uncertainty 

about semantic information

GraphSPN Makov Random Fields

• 𝐷𝑖
𝑘(𝑿𝒊) defined over 

single hypothetical 
binary observation 𝑥𝑖
(assume observed):

𝐷𝑖
𝑘 𝑋𝒊 = ൝

𝛼𝑖
𝑘 𝑋𝑖 = 𝑥𝑖

1 − 𝛼𝑖
𝑘 𝑋𝑖 = ҧ𝑥𝑖

Experimental ProcedureExample of noisified semantic map

• MRF structure follows 
graph structure

• MRF-2: pairwise 
potentials

• MRF-3: 3-variable 
potentials

• Local evidence: 

𝜙𝑖 𝑌𝑖 = 𝑐𝑘 = 𝛼𝑖
𝑘

• Learning: all graphs from 
two buildings

• Testing: graphs from 
remaining building with 
various levels of noise

• Marginal inference:
argmax𝑘𝑃(𝑌𝑖 = 𝑐𝑘|𝑿 = 𝒙)


