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Abstract— We introduce TopoNets, end-to-end probabilistic
deep networks for modeling semantic maps with structure
reflecting the topology of large-scale environments. TopoNets
build a unified deep network spanning multiple levels of
abstraction and spatial scales, from pixels representing ge-
ometry of local places to high-level descriptions of semantics
of buildings. To this end, TopoNets leverage complex spatial
relations expressed in terms of arbitrary, dynamic graphs. We
demonstrate how TopoNets can be used to perform end-to-
end semantic mapping from partial sensory observations and
noisy topological relations discovered by a robot exploring
large-scale office spaces. Thanks to their probabilistic nature
and generative properties, TopoNets extend the problem of
semantic mapping beyond classification. We show that TopoNets
successfully perform uncertain reasoning about yet unexplored
space and detect novel and incongruent environment configura-
tions unknown to the robot. Our implementation of TopoNets
achieves real-time, tractable and exact inference, which makes
these new deep models a promising, practical solution to mobile
robot spatial understanding at scale.

I. INTRODUCTION
The ability to make uncertain inferences about spatial

information is fundamental for a mobile agent planning and
executing actions in large, unstructured environments [1],
such as office buildings, airports and search and rescue sites.
Robots, while exploring their environments, gather a growing
body of knowledge captured at different spatial locations,
scales (from places to buildings), and levels of abstraction
(from sensory data, through place geometry and appearance,
up to high-level semantic descriptions).

While such information is typically incomplete and noisy,
it is also structured according to relationships that govern the
human world. Discovering and leveraging relationships that
span local and global spatial scales as well as multiple levels
of abstraction can help improve robustness, resolve ambi-
guities, and enable predictions about latent and unobserved
information [1][2][3]. Unfortunately, such relationships are
also complex and noisy, making semantic mapping a difficult
structured prediction problem. Additionally, semantic maps
are dynamic structures, with dependencies often expressed
in terms of graphs containing a different number of nodes
and relations for every environment [2].
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Fig. 1: Illustration of a TopoNet instantiated over a semantic
map, with structure adapted to the topology of the envi-
ronment. It incorporates spatial information across multiple
levels of abstraction at both local and global spatial scales,
and forms a probability distribution over semantic attributes
and geometric representations of places.
Video: http://y2u.be/luv2XpaHeTU.

As a result, most deep approaches to semantic mapping
fail to capture and exploit such relations. In particular,
approaches utilizing convolutional neural networks focus on
relationships constrained to local scenes [4] and require that
the number of latent variables be constant and related through
a similar global structure [5]. Other approaches compromise
on the structure complexity [6], introduce prior structural
knowledge [7], or make hard commitments about values of
semantic attributes [2]. Additionally, these methods are often
assembled from independent spatial models [2][8], which
exchange information in a limited fashion.

To overcome these shortcomings, in this work, we present
TopoNets, end-to-end deep networks for modeling seman-
tic maps with dynamic structure adapted to topology of
large-scale environments. TopoNets leverage the advantages
of Sum-Product Networks (SPNs) and once instantiated,
form a unified model that spans across abstractions and
spatial scales, with guaranteed tractable, exact inference
(Fig. 1). In our experiments, we evaluated TopoNets via the
tasks of semantic place classification, inference of semantics
of unexplored places, and detection of novel environment

http://y2u.be/luv2XpaHeTU


configurations. In each task, we compare the end-to-end
TopoNets with a more traditional model assembled from two
components: a Markov Random Field (MRF) representing
spatial relations and a deep model capturing place appear-
ance. We show that TopoNets more effectively disambiguate
noisy local predictions based on real-world observations, and
perform uncertain reasoning about yet unexplored space.
Furthurmore, we demonstrate that TopoNets exhibit gener-
ative properties useful for novelty detection, and achieve
real-time performance while permitting exact probabilistic
inference.

II. RELATED WORK

There have been numerous attempts to employ structured
prediction to modeling semantic maps with topological spa-
tial relations. Mozos et al. [6] used hidden Markov models
(HMMs) to smooth sequences of AdaBoost classifications
of place observations into semantic categories. Friedman et
al. [7] proposed Voronoi Random Fields (VRFs) which are
CRFs constructed according to a Voronoi graph extracted
from an occupancy grid map. VRFs utilize pairwise po-
tentials to model dependency between neighboring graph
nodes and 4-variable potentials to model junctions. Pronobis
and Jensfelt [2] applied Markov Random Fields to model
pairwise dependencies between semantic categories of rooms
according to a topological map. The categorical variables
were connected to Bayesian Networks that reasoned about
local environment features, forming a chain graph. This
approach relied on a door detector to segment the envi-
ronment into a topological graph with only one node per
room. Overall, while probabilistic, these approaches employ
approximate inference, leading to problems with conver-
gence [7]. Moreover, additional prior knowledge or hard
commitments about the semantics of some places is required
in order to obtain a tractable model. In contrast, in this work,
we make no such commitments and rely on topological maps
built by a real robot while performing navigation and action
execution. At the same time, probabilistic inference with our
model remains exact and real-time.

Recently several deep structured prediction methods have
been proposed [9][10][11]. Unfortunately, most are designed
for computer vision tasks and are not applicable to the
problem of modeling spatial relations in large-scale dynamic
environments. Notably, Mahmood et al. [9] proposed a
feature fusion method for conditional GAN which is con-
ceptually similar to a Conditional Random Field (CRF). The
approach does not consider the joint probability distribution
of local observations and semantics as we do in this work.
Wu et al. [10] proposed a deep variant of MRFs based on
multiple recurrent neural networks for vision tasks. However,
the method is applicable only to problems with fixed number
of variables, while our approach handles graphs of arbitrary
size and structure.

TopoNets build upon our previous work, which introduced
Sum-Product Networks (SPNs) to the domain of robotics.
First, Pronobis et al. [12] established the use of SPNs for
local place classifiction via a deep generative architecture

that models robot-centric laser range observations. Second,
Zheng et al. [13] proposed a general probabilistic approach
to structured prediction, named GraphSPN, that extended
SPNs to allow for the modeling of arbitrary, dynamic graphs.
That work provided a new theoretical framework, yet relied
on synthetic local evidence. In this paper, we propose a
unified, end-to-end architecture, and experiment with real-
world robot data collected in office settings to demonstrate
its practical value to the semantic mapping problem.

Fig. 2: A simple SPN for a naive Bayes mixture model
P(X1,X2), with three components over two binary variables.
The bottom layer consists of indicators for different values of
the variables X1 and X2. Weighted sum nodes, with weights
attached to inputs, are marked with +, while product nodes
are marked with ×.

III. PRELIMINARIES

We begin by giving a brief introduction to Sum-Product
Networks (SPNs), which provide the fundamental theoretical
framework for TopoNets. Then, we describe the structure of
the semantic maps for which TopoNets are built.

A. Sum-Product Networks

SPNs are deep probabilistic models with solid theoretical
foundations [14][15][16] that have been shown to provide
state-of-the-art results in several domains [12][16][17][18].
One of the primary limitations of traditional probabilistic
graphical models is the complexity of their partition function,
often requiring complex approximate inference in the pres-
ence of non-convex likelihood functions. In contrast, SPNs
represent probability distributions with partition functions
that are guaranteed to be tractable and involve a polynomial
number of sum and product operations, permitting exact
inference. SPNs combine these advantages with benefits of
deep learning by acquiring hierarchical probabilistic models
directly from high-dimensional, noisy data. While not all
probability distributions can be encoded by polynomial-sized
SPNs, recent experiments in several domains show that the
class of distributions modeled by SPNs is sufficient for many
real-world problems, including speech [17] and language
modeling [19], human activity recognition [18], image clas-
sification [16], image completion [15], and robotics [12].

As shown in Fig. 2, on a simple example of a naive Bayes
mixture model, an SPN is a generalized directed acyclic
graph composed of weighted sum and product operations.
The sums can be seen as mixture models over subsets of
variables, with weights representing mixture priors. Products



can be viewed as features or mixture components. Not
all possible architectures consisting of sums and products
result in valid probability distributions and certain constraints
(completeness and decomposability [15][20]) must be fol-
lowed to guarantee validity.

SPNs model joint or conditional distributions and can be
learned generatively [15] or discriminatively [16] using Ex-
pectation Maximization (EM) or gradient descent (GD). Ad-
ditionally, several algorithms were proposed for simultaneous
learning of network parameters and structure [21][22][23]. In
this work, we use a simple structure learning technique [12]
which begins by initializing the SPN with a random dense
structure that is later pruned. The approach recursively
generates network nodes based on multiple random decom-
positions of the set of variables into multiple subsets until
each subset is a singleton. The resulting structure is a deep
network consisting of products combining the subsets in each
decomposition and sums mixing different decompositions at
each level. SPNs can be defined for both continuous and
discrete variables, with evidence for categorical variables
often specified in terms of binary indicators.

Inference in SPNs is accomplished by an upwards pass
which calculates the probability of the evidence and a
downwards pass which obtains gradients for calculating
marginals or MPE (Most Probable Explanation) state of the
missing evidence. The latter can be obtained by replacing
sum operations with weighted max operations (the resulting
network is sometimes referred to as Max-Product Network,
MPN [16]). For a detailed explanation of SPNs, we refer the
reader to [20][16][15].

B. Semantic Maps

In order to represent dynamic spatial relations at the
scale of a building, we define semantic maps as growing
topological graphs of places associated with observations of
local geometry as well as semantic descriptions. Examples
of the topological and semantic information in such maps
acquired by a robot (without local geometries) are shown in
Fig. 7. To obtain the representation of local place geometry,
as the first step, we perform spatio-temporal integration of
the sensory input. We rely on laser-range data, and use a
particle-filter grid mapping [24] to maintain a robot-centric
map of 5m radius around the robot. The goal of the local
representation is to model geometry of a single place. Thus,
we constrain the observation of a place to the information
visible from the robot (structures that can be raytraced from
the robot’s location). As a result, walls occlude the view
and the local map mostly contains information from a single
room.

In our implementation, spatial relationships within each
local place are modeled from the perspective of a mobile
robot acting at that place. Therefore, in the next step, each
local observation is transformed into a robot-centric polar
occupancy grid. Examples of such local place representations
acquired by a robot can be seen in Fig. 5. The resulting
observation contains higher-resolution details closer to the
robot and lower-resolution context further away. This relates

to how spatial information is used by a mobile robot when
planning and executing actions. It is in the vicinity of the
robot that higher accuracy of spatial information is required.
In the future, we plan to use a similar strategy when
representing 3D and visual information, by extending the
polar representation to 3 dimensions.

The topological graph of a complete semantic map is built
and updated incrementally while the robot is exploring its
environment [25]. The primarily purpose of the graph is
to support the behavior of the robot. As a result, nodes in
the graph represent places the robot can visit and the edges
represent both navigability and spatial relations. The places
are associated with their local geometry representations and
latent variables representing semantics. Additional nodes in
the graph, called placeholders, are created to represent ex-
ploration frontiers. Those frontiers are added at neighboring,
reachable, but unexplored locations and connected to existing
places. Then, once the robot performs an exploration action,
a placeholder is converted into a place, to which a local
geometric place representation is anchored.

IV. TOPONETS

TopoNets are deep SPNs that adapt their structure accord-
ing to the topology and spatial relations in a semantic map.
We begin with a formal definition of TopoNets, followed by
a description of the learning and inference procedure.

A. Definition

Let us use XXX i to denote local observations of place
geometry, and YYY i to denote semantic attributes that describe
the places. We can specify a semantic map as M = (T,XXX ,YYY ),
where T = (VVV ,EEE) is a topological graph with vertices VVV and
edges EEE, and XXX = {XXX i : i ∈VVV}, YYY = {YYY i : i ∈VVV}.

A TopoNet is not specific to any particular semantic map,
but rather a template-based model that can be instantiated
for certain states of a semantic map to perform inference
tasks. To define TopoNets, we start by specifying a set T =
{T1, · · · ,Tn} of sub-map templates, which can be used to
decompose a semantic map. We define a sub-map template
T =(V,E) as a graph with X = {XXX i : i∈V} and Y = {YYY i : i∈
V}. Such template can be a recurring topological structure in
a given dataset of semantic maps. Following [13], we define
the resulting decompositon as:

Definition 1: A decomposition of a semantic map M =
(T,XXX ,YYY ) using sub-map templates T is a set of map
parts Mk = (Tk,XXXk,YYY k), with Tk = (VVV k,EEEk), such that Tk
is isomorphic with any T ∈ T ,

⋃
k Tk = T , ∀k,lTk ∩Tl = ∅,

and the variables XXXk and YYY k correspond to vertices of Tk:
XXXk = {XXX i : i ∈VVV k}, YYY k = {YYY i : i ∈VVV k} .

With that, we can define TopoNets as a template model
consisting of a set of template SPNs:

Definition 2: A template SPN ST [X ,Y ] corresponding to
a sub-map template T is an SPN that models the distribution
PT (X ,Y).

Definition 3: A TopoNet ST is a set of template SPNs
such that ST = {ST [X ,Y ] : T ∈ T }.
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Fig. 4: A topological graph can be decomposed in multiple
ways using the same set of sub-map templates.

B. Learning (Fig. 3, I)

As the robot explores a training environment (A), it can
incrementally construct a topological graph (B1) using the
approach described in Sec. III-B and obtain local sensory
observations at each place (B2). Eventually, the robot collects
a dataset of annotated semantic maps MMMtrain (C). We specify
a set T of sub-map templates, each corresponding to a
template SPN. We use T to decompose MMMtrain, which leads
to a dataset of map parts (D), defined in Def. 1. Then,
the structure and parameters of each template SPN ST are
learned using the dataset of matching map parts (E). The
specific procedure used to obtain template SPNs in our
experiments is described in Sec. V-B.

C. Inference (Fig. 3, II)

When the robot explores a new test environment (A),
it constructs a topological graph with each place corre-
sponding to a local geometry representation (B). Next, a
trained TopoNet ST is adapted to the topological structure
of the underlying semantic map MMMtest(T,XXX ,YYY ) and latent
place semantics is inferred. This adaptation process is the
instantiation of a TopoNet performed as follows. First, the
semantic map is decomposed into map parts using sub-map
templates T . For each map part Mk =(Tk,XXXk,YYY k), a template
SPN ST ∈ST is selected such that Tk is isomorphic with T .
The structure and weights of ST are instantiated as an SPN
ST [XXXk,YYY k] that models the distribution PT (XXXk,YYY k). The
instantiated template SPNs for all map parts are combined

with a product node, which forms a sub-SPN over a single,
complete graph decomposition (C). Using the same T , a
topological graph is decomposed in multiple different ways
(Fig. 4). After N different decomposition attempts, the N
product nodes become the children of the root sum node of
the final network (D). This forms a distribution PT

MMMtest
(XXX ,YYY ),

which can be seen as a mixture model over the different
decompositions.

Once instantiated, TopoNets can perform different types
of probabilisitic inferences:

1) Semantic place classification: For all places explored
by the robot, where local observations XXX are available, we
can task TopoNets with inferring latent semantics:

ŷyyexplored = argmax
yyyexplored

P(yyyexplored |xxxexplored) (1)

2) Inferring semantics of unexplored space: We can in-
crease the complexity of the task and infer semantic de-
scriptions of both explored places and nearby unexplored
placeholders, for which local evidence is not available:

ŷyyexplored , ŷyyunexplored

= argmax
yyyexplored ;

yyyunexplored

P(yyyexplored ,yyyunexplored |xxxexplored) (2)

3) Novelty detection: This inference task evaluates the
generative properties of TopoNets. For a certain set of
local observations xxxexplored , we can evaluate the likelihood
P(xxxexplored) and use it as a measure of novelty. The likelihood
can be thresholded to determine whether the complete envi-
ronment is within the distribution of environments known
during training:

∑
yyyexplored

P(yyyexplored ,xxxexplored)> threshold (3)
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Fig. 6: Sub-map templates used in our experiments.

V. EXPERIMENTAL SETUP

A. Dataset

Our experiments were performed for semantic maps
built from laser-range and odometry data from the COLD-
Stockholm dataset1. The dataset contains 32 data sequences
captured using a mobile robot navigating four floors (floors
4-7) of an office building. On each floor, the robot explored
rooms of different semantic categories. We experimented
with two place category setups, with 6 and 10 classes, shown
in Fig. 5. Each class appeared on at least two of the four
floors. We used the two setups to illustrate how TopoNets
behave in settings of varying difficulty. To ensure variability
between training and test sets, we split the dataset four times,
each time training TopoNets on data from three floors and
leaving one floor out for testing. Note that unlike in [13],
where experiments were conducted with synthetic observa-
tions, we experimented with real data and more challenging
configurations than the 4-class setup in [12].

B. Realization of TopoNets

The TopoNets framework can be adapted to the complexity
of the topological maps and the type of sensory input
available to the robot. In our experiments, we built TopoNets
using a set of three simple sub-map templates shown in
Fig. 6. For each sub-map template, the structure and weights
of the corresponding template SPN were obtained using the
same protocol described as follows.

The structure of each template SPN was partially designed
based on domain knowledge and partially learned according
to the algorithm described in Sec. III-A. At the bottom of the
network, the geometry of each place in the sub-map template
was modeled independently, using sub-SPNs resembling the
place classification model proposed in [12]. For each place,
the local sensory input integrated into a polar occupancy
grid was captured using a set of indicator variables. The
resolution of the local place geometries (Fig. 5) was 56
angular cells by 21 radial cells, resulting in 1176 random
variables per place. Next, we split the polar occupancy grid
equally into eight 45-degree views. For each view, we learned

1http://coldb.org

an independent sub-SPN. This allowed us to use networks
of different complexity for representing low-level features
and high-level structure of a place. On top of the sub-SPNs
representing the views, we learned a sub-SPN representing
a complete place geometry. That process was repeated for
each semantic place class, resulting in either 6 or 10 sub-
SPNs for each place in the sub-map template. The upper
layers of the template SPN combined all the sub-SPNs into a
single template distribution. The structure of those layers was
initialized to best represent the characteristics of a specific
sub-map template and learned as described in Sec. III-A.

The parameters of the model were learned using Gra-
dient Descent via two different losses for different layers
of a template SPN. For the bottom sub-SPNs representing
features of specific semantic classes, we employed a cross-
entropy discriminative loss in order to maximize classifica-
tion performance. In contrast, the top layers were trained with
Maximum-Likelihood generative loss in order to retain good
generative abilities and estimation of likelihoods for com-
plete semantic maps. This provided a good trade-off between
the different abilities of the probabilistic representation.

C. Baseline

As discussed in Section II, existing deep approaches
to structured prediction and semantic mapping could not
be directly applied to the task formulated in this paper.
Therefore, as a baseline, we used a more traditional model
composed of two sub-models. First, similarly to the semantic
mapping techniques in [2][26], we used a pairwise Markov
Random Field (MRF) to capture dynamic spatial relations
in topological graphs. However, since the complexity of the
sensory observations requires a different perceptual model,
we combined the MRFs with a deep representation capturing
the geometry of local places. To this end, we emploed local
SPN models, structured identically to the bottom layers of
our TopoNets, and trained them discriminatively to infer
semantic place categories of independent places based only
on local evidence. The resulting model used evidence from
local SPNs as unary potentials φi(Yi = c) = P(XXX i|Yi = c) in
the MRF. The pairwise potentials were obtained as in [13]
by computing co-occurrence statistics of semantic classes of
neighboring places in the training topological graphs.

D. Software and Performance

The experiments with TopoNets were conducted using
LibSPN [27]2, a library for learning and inference with SPNs

2https://libspn.org.

http://coldb.org
https://libspn.org


A. Semantic Place Classification

Data Split #classes Local SPNs Local SPNs + MRF TopoNet
avg. std. avg. std. avg. std.

456-7 6 95.22% 1.70% 96.35% 2.68% 97.50% 1.11%
10 73.48% 1.92% 68.03% 4.55% 74.69% 2.73%

457-6 6 96.75% 1.98% 93.87% 2.24% 97.39% 1.25%
10 81.49% 1.93% 81.63% 6.90% 82.55% 1.37%

467-5 6 92.70% 1.52% 95.66% 3.14% 94.46% 1.62%
10 73.41% 2.06% 66.63% 5.38% 74.58% 2.48%

567-4 6 99.16% 0.94% 96.00% 3.21% 98.30% 1.64%
10 87.88% 2.83% 84.31% 1.56% 88.73% 2.35%

Overall 6 95.96% 2.83% 95.47% 3.00% 96.91% 2.04%
10 79.06% 6.45% 75.15% 9.34% 80.14% 6.35%

B. Inferring Semantics of Unexplored Space

Data Split #classes Local SPNs + MRF TopoNet
avg. std. avg. std.

456-7 6 94.07% 5.65% 99.46% 1.44%
10 57.94% 3.33% 70.24% 10.18%

457-6 6 79.77% 6.49% 83.29% 4.26%
10 61.62% 9.48% 61.30% 4.83%

467-5 6 94.72% 3.48% 96.35% 3.62%
10 50.50% 5.48% 54.48% 3.38%

567-4 6 96.09% 3.50% 98.75% 3.31%
10 71.72% 4.78% 71.94% 8.45%

Overall 6 91.16% 8.27% 94.46% 7.35%
10 60.45% 9.84% 64.49% 10.11%

TABLE I: Results of the experiments with semantic place classification and inference of semantics of unexplored space.

and TensorFlow, as well as an implementation of Graph-
SPNs [13]3. For MRF experiments, we used an implemen-
tation of Loopy Belief Propagation provided by the libDAI
library [28]. We compared the inference time for TopoNets
and the baseline on semantic maps built for 10 classes.
TopoNets were built for 40 decompositions of the semantic
maps. For maps containing 105 and 155 nodes, TopoNets
evaluated PT

MMMtest
(XXX ,YYY ) in 0.36s and 0.49s respectively, on a

desktop computer with one GeForce GTX 1080 Ti GPU.
In comparison, inferences with MRF often required more
than 45s due to poor convergence and hard-stopping. Note
that these run times correspond to inference over the entire
semantic map. In practice, inference with TopoNets can be
restricted to only those parts of the network affected by
new evidence, drastically reducing the amount of required
computations.

VI. RESULTS AND DISCUSSIONS

Below, we describe and discuss the results of three exper-
iments corresponding to each of the inference tasks specified
in Sec. IV-C.

1) Semantic Place Classification: First, we tasked To-
poNets and the baseline employing MRFs and local SPNs
with inferring the semantics of explored places given local
sensory observations (Sec. IV-C.1). For this experiment, we
used an additional baseline consisting of independent local
SPNs, inferring semantic descriptions of independent places,
without relying on topological spatial relations. The accuracy
for each experiment was calculated as the percentage of
all places in a test map for which the most likely inferred
semantic class matched the groundtruth.

As shown in TABLE I-A, local SPNs obtained overall ac-
curacy (over all test maps and data splits) of 95.96%(±2.83)
for the 6-class setup and 79.06%(±6.45) for the 10-
class setup. By incorporating the topological spatial rela-
tions, TopoNets improved that result to 96.91%(±2.04) and
80.14%(±6.35), respectively. At the same time, the solution
employing MRFs for capturing spatial relations resulted
in lower performance in both cases: 95.47%(±3.00) and
75.15%(±9.34). This trend was confirmed for most data
splits, with TopoNets outperforming each baseline in 7 out
of 8 cases, and MRFs lowering the performance compared

3https://github.com/zkytony/graphspn

to local SPNs in 5 out of 8 cases. In-depth analysis of
the inference results revealed that the likelihoods of the
latent semantic categories calculated independently for local
places can be noisy [13]. This significantly impacted the
performance of MRFs, while TopoNets remained largely
unaffected by noisy local evidence.

As shown in the visualizations of place classification
results in Fig. 7a-b, local SPNs provided a strong baseline
(particularly in the 6-class setup). However, relying only
on local evidence can often lead to perceptual aliasing and
misclassification of a cluster of nearby places. That effect
was more pronounced in the 10-class setup. In certain cases,
the misleading local evidence overpowered the global struc-
tural information. This typically occurred in situations where
the incorrect, alternative explanation for the local evidence
agreed with the global environment structure captured in
the training data (e.g. a meeting room misclassified as an
office as shown in the highlighted area in Fig. 7b). In
such a case, TopoNets could spread the misclassifications to
nearby places within the same room. However, in most cases,
TopoNets were able to exploit topological spatial relations
to correct misclassifications, resulting in improvement in the
overall accuracy.

2) Inferring Semantics of Unexplored Space: Next, we
tasked TopoNets and the baseline with inference of semantic
descriptions of unexplored placeholders lacking local evi-
dence, based solely on observations attached to adjacent
explored places (Sec. IV-C.2). Importantly, the semantics of
the explored places was not provided and remained latent in
this experiment. The accuracy was defined as the percentage
of all placeholders in a test map for which the most likely
semantic class matched the groundtruth. We report the results
in TABLE I-B.

In this experiment, TopoNets outperformed the baseline
even more significantly. TopoNets correctly inferred the
semantics of 94.46%(±7.35) and 64.49%(±10.11) place-
holders in the 6- and 10-class settings, respectively, compared
to 91.16%(±8.27) and 60.45%(±9.84) for the baseline.
In fact, MRFs coupled with local deep models outperformed
TopoNets in only 2 out of 32 sequences in the 6-class
setting, and 8 out of 32 sequences in the 10-class setting.
As visualized in Fig. 7c-d, TopoNets could successfully
exploit the knowledge about global environment structure to
distribute evidence to unexplored space.

https://github.com/zkytony/graphspn
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Fig. 7: Visualization of TopoNet inference results for four sequences on different floors. The occupancy grid maps and the
topological graphs were collected as the robot navigated the environment. The top row shows results for semantic place
classification, while the bottom row shows results for inference of unexplored space. The accuracy for the corresponding
tasks is shown in the bottom-right corners. Colors indicate the groundtruth or the most likely inferred class.

We observed that increasing the number of decomposi-
tions, had a positive influence on the performance of To-
poNets on this task (92.43%(±8.08) for 12 decompositions
and 94.46% for 40 decompositions in the 6-class setting).
Placeholders are exploration frontiers that reside at the outer
perimeter of the semantic map, and a larger number of
decompositions increases the chance of placeholders being
covered by complex sub-map templates.

These results together with the computational efficiency
of TopoNets (Sec. V-D) illustrate their practical benefits for
spatial understanding in the open world.

3) Novelty Detection: Finally, we exploited the generative
properties of the models to determine whether whole envi-
ronments match the distribution obtained during training or
can be considered novel. This property is particularly impor-
tant for robots operating in open, unknown environments.

For this experiment, we required evidence gathered in
novel environments, which were incongruent with the train-
ing data. To obtain novel semantic maps, we randomly
selected pairs of groundtruth classes, and swapped the local

evidence belonging to the two classes for all places in the
test maps. For example, the evidence for rooms labeled as
an office was swapped with the evidence for bathrooms,
effectively creating new environments with different local
geometries, where offices now appeared to be bathrooms, and
vice versa. We randomized 10 different novel maps for the 6-
class setup and 30 for the 10-class setup. At the same time,
the original test set provided maps that, while previously
unseen, were considered to be within the distribution of the
training environments. Note that some of the random swaps
generated environment configurations that were similar to
those in the training data (e.g. a kitchen swapped with a
meeting room), resulting in a difficult detection problem.

The novelty detection results are shown as ROC curves in
Fig. 8. Both approaches performed well on this task, with
MRFs outperforming TopoNets (average AUC of 0.99 for
MRFs and 0.96 for TopoNets in the 6-class case), a similar
result to the one reported in [13], despite differences in the
setup. From the plots, we see that when taking into account
all data splits and test maps, TopoNets were able to correctly
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Fig. 8: ROC plots for the task of novelty detection.

detect 89% and 86.25% of novel maps, in 6 and 10-class
setups, respectively, while missclassifying as false positives
only 9.38% of test maps for the 6-class case and 15.63% for
the 10-class case. Such level of performance can be sufficient
for many real-world applications, where novelty detection
can be used to avoid errors and trigger additional learning.

VII. CONCLUSIONS

This paper presents TopoNets, end-to-end deep networks
for modeling semantic maps with structure adapting to
dynamic environment topology. Through experiments with
real-world robot sensory observations, we comprehensively
evaluated and analyzed the inference behavior and generative
properties of TopoNets. We demonstrated that TopoNets are
an efficient and practical approach to spatial understanding.
Furthermore, their properties make them ideal for supporting
behavior planning and execution in robots operating in large,
open, unknown environments. It is our hope that showcasing
the benefits of SPN-based deep models will provide a new
direction for research towards novel probabilistic inference
techniques in robotics.
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