
Parallelizing POMCP to Solve Complex POMDPs
Semanti Basu, Sreshtaa Rajesh, Kaiyu Zheng, Stefanie Tellex, R. Iris Bahar

Dept. of Computer Science, Brown University, Providence, RI 02912

Abstract—In the real world, robots must be able to plan and
operate under uncertainties. To that end, Partially-Observable
Markov Decision Processes (POMDPs) are a popularly used
architecture that lets us model planning problems where sys-
tem states are only partially known. Planning algorithms are
then used to solve POMDPs. Partially-Observable Monte Carlo
Planning (POMCP) is one such planning algorithm that has
been shown to be very successful in solving POMDPs, especially
under larger numbers of simulations. However, POMCP becomes
prohibitively slow and expensive over large and complex domains,
making it unsuitable for many real world applications. This paper
outlines an effort to develop a parallelized version of POMCP
to aid in faster decision making in complicated scenarios. Our
long term goal is to implement parallel POMCP in hardware so
it can be deployed on robots for fast and accurate planning in
uncertain environments.

I. INTRODUCTION AND OVERVIEW
The objective of this study is to develop a parallelized

version of POMCP [6], which has been widely successful in
planning under uncertainty [3, 9], to enable robots to plan in
real time across large and complex domains. POMCP, which
is based on Monte Carlo planning, usually relies on running
a large number of simulations using a blackbox world model
in order to achieve performance. The objective of solving a
POMDP problem is to find a policy that maximizes return
making it a popular tool to model optimal control problems.
POMCP has been very successful in solving POMDPS. How-
ever, in larger domains (such as most real-world problems) that
are more complex, POMCP takes an impractically long time to
run a sufficient number of simulations for acceptable results.
DESPOT [8], another online planning algorithm often used
for solving POMDPs, was parallelized using a combination
of CPU and GPU parallelization for the belief search tree
in [1]. We are extending the concept of parallelization to
POMCP, where we hope to achieve similar performance while
decreasing the time taken to achieve those results, making
POMCP more suitable for use in complex domains.

One of the major challenges in parallelizing POMCP is the
fact that the algorithm is inherently sequential—there exist
distinct stages: (1) sampling from the current belief state (2)
conducting the look-ahead tree search (3) selecting an action,
and receiving an observation that is then used to update the
belief state. In this manner, each action selected is dependent
on all the previous actions taken and observations received.The
challenge to parallelizing it is to find a way to divide the
computational expense without altering the core sequential
decision-making which makes POMCP [6] so robust.

In this work, at a high level, we are exploring different
techniques for parallelizing POMCP in software. POMCP
conducts a modified Monte-Carlo Tree Search (MCTS) to

select an action that is asymptotically optimal at each step
by constructing a search tree of histories. Building the search
tree requires running repeated simulations which is the most
computationally expensive part of POMCP. We attempt to
speed up the search tree construction and action selection
by extending techniques used for MCTS parallelization [2] to
POMCP. To that end, we are exploring root parallelization and
tree parallelization. Our hypothesis is that even for simpler
problems, parallelizing POMCP should make the algorithm
run faster than the serial on large domains in terms of runtime
and perform no worse than the serial version in terms of
cumulative reward achieved.

Currently, we have modified the original C++ implemen-
tation of POMCP in Silver and Veness [6] to incorporate
root parallelization to speed up action selection. We bench-
marked the effectiveness of the parallel version developed on
Rocksample, a commonly used POMDP benchmark domain
in literature [7]. Preliminary results on large Rocksample
domains show that even on this simpler problem, the parallel
version selects actions faster than the serial version without a
significant reduction in reward.

II. TECHNICAL APPROACH

A. Introduction to POMDP and POMCP
In POMDP [4] architecture, uncertainty is represented

as a probability distribution over system states. This is
called “belief.” To define a POMDP problem, a tuple
〈S,A,O,R, T,Ω, γ〉 is defined where S represents the set of
possible system states, A gives us the set of possible actions,
Ω is the set of all possible observations, O is the probability
distribution over all possible observations, R is the reward
function, T is the transition model, and γ is the discount factor.
At time t, the environment state is st. When the agent takes
an action at, the environment state transitions into st+1 and
receives observation ot+1 and reward rt+1. The history ht at
any time step t is the sequence of action-observation pairs up
to t, such that ht = (a0, o1, a1, o2, · · · , at−1, ot).

A policy π is a probability distribution over actions, given
history. πt(h, a) = P (at = a|ht = h). The return Rt =∑∞
l=t γ

l−trl is evaluated by measuring the discounted reward
obtained from time t on wards.The value function V π(h) =
E[Rt|ht = h] gives us the expectation of the return obtained
on executing a policy, given history (h) at that time step. The
executed action is dependent on the policy that maximizes the
value function.

POMCP is an online planning algorithm to solve POMDP
problems. It takes as input the current belief state, and the
POMDP problem and returns the best action at that step.



A look-ahead tree search is carried out from the current
belief state to determine the best action. The tree is pruned
upon receiving an observation after the action is executed.A
belief-state update is carried out through Monte Carlo particle
filtering, as detailed in Silver’s work [6].

B. POMCP Parallelization techniques
Action-selection is based on Monte Carlo Tree Search and

as such requires a large number of simulations which is
computationally costly in POMCP. Thus, we seek to explore
at least two schemes for parallelizing POMCP: (1) Root
parallelization and (2) Tree parallelization, both of which are
based on techniques used for MCTS parallelization [2].

1) Root Parallelization: In serial POMCP, the look-ahead
search tree is built by running a fixed number of simulations
or by running simulations until timeout. In the parallel version
we seek to obtain equivalent accuracy in action selection in
less time by extending the concept of root parallelization
commonly used to parallelize MCTS [2] to POMCP. In root
parallelization for MCTS, several trees are built simultane-
ously, and after a certain amount of time has passed, the results
are merged to select a move. In serial POMCP, let us suppose
the total number of simulations is t. In root-parallel POMCP,
k trees are built in parallel, each running t/k simulations.
Each tree is built from a root state randomly sampled from the
current belief. After the trees are built, the output is merged to
generate an action for that time step. Several techniques can be
explored for merging [5], however for the preliminary results,
the most popular action was chosen. After selecting an action,
POMCP executes it and receives an observation and reward.
These values are used to update and prune the search trees
built in parallel. The process of action selection is repeated
until termination. In the case where there was a tie between
multiple actions, a random action was chosen among them.

2) Tree Parallelization: In this type of parallelization, sev-
eral branches of the tree are explored simultaneously. Here, the
tree is built with the same number of simulations as the serial
but ideally finishes in 1

n

th of the time (where n represents
the number of branches simultaneously explored). We hope
to compare this scheme of parallelization against the root
parallelized implementation in the future.

C. Preliminary results
For the following plots, we ran POMCP on the Rocksample

domain [7] with a 15 × 15 board containing 15 rocks. The
number of simulations ranged from 28 simulations to 217.
We averaged the reward and timestep values over 20 runs
of each simulation size, or until a timeout of 10000 seconds
was reached. As shown in Figure 1, when the number and
complexity of simulations grows large, the average time-cost
per action selection of the parallelized version of POMCP is
less than that of the serial version for the steps before the
algorithm converges. These per-step time savings accumulate
to a significant time reduction in larger domains that require
long planning horizons. Additionally, we observe that, when
taking into account the inherent randomness of POMCP, there
appears no significant reduction in reward between the serial

and parallel versions (Figure 2). We also experimented on
smaller Rocksample problems and observed similar trends.

Fig. 1: Average time to select initial actions: Rocksample 15,15

Fig. 2: Cumulative reward comparison: Rocksample 15,15

III. CONCLUSION AND NEXT STEPS
Currently, we have implemented a root-parallelized version

of POMCP, and have benchmarked it against a serial imple-
mentation of POMCP on different-sized domains of a small
problem, Rocksample. We plan to repeat this process with
a tree-parallelized version of our code to see which method
of concurrency provides the most significant performance
gain (which we define as a reduction in time taken without
compromising on reward achieved). Additionally, looking at
the root-parallelized version itself, we would like to explore
different ways of selecting the “best” action returned from
individual threads. For our preliminary results, we simply
chose the action that the majority of the threads returned, but
there may be more optimal ways to select an action. In cases
where there was more than one majority, a random mode was
chosen. We believe that there may be more optimal ways to
choose an action: for example, selecting the action with the
highest average cumulative reward across threads.

The ultimate goal in parallelizing POMCP is to increase
the practicality of using the algorithm to solve POMDPs in
real-world applications. Thus, we plan to test the parallelized
versions against the serial version’s performance in more
complex domains, such as robotic arm manipulation/grasping.
Defining a complex task as a POMDP and integrating it with
a real-world action-observation loop such as a robot will both
be challenging; we might have to redesign parts of the code
to efficiently integrate it with ROS, so we can apply it on
a physical robot. Ultimately, we hope to implement POMCP
in hardware and see whether the performance gain translates
from software to the real world.



REFERENCES

[1] Panpan Cai, Yuanfu Luo, and David Hsu. Hyp-despot:
A hybrid parallel algorithm for online planning under
uncertainty. 02 2018.

[2] Guillaume M. J. B. Chaslot, Mark H. M. Winands, and
H. Jaap van den Herik. Parallel monte-carlo tree search. In
H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, and Mark
H. M. Winands, editors, Computers and Games, pages 60–
71, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
ISBN 978-3-540-87608-3.

[3] Jean-Alexis Delamer, Yoko Watanabe, and Caroline P.C.
Chanel. Safe path planning for uav urban oper-
ation under gnss signal occlusion risk. Robotics
and Autonomous Systems, 142:103800, 2021. ISSN
0921-8890. doi: https://doi.org/10.1016/j.robot.2021.
103800. URL https://www.sciencedirect.com/science/
article/pii/S0921889021000853.

[4] Leslie Pack Kaelbling, Michael L. Littman, and
Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial
Intelligence, 101(1):99–134, 1998. ISSN 0004-3702.
doi: https://doi.org/10.1016/S0004-3702(98)00023-X.
URL https://www.sciencedirect.com/science/article/pii/
S000437029800023X.

[5] Richard B. Segal. On the scalability of parallel uct.
In H. Jaap van den Herik, Hiroyuki Iida, and Aske
Plaat, editors, Computers and Games, pages 36–47, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-
3-642-17928-0.

[6] David Silver and Joel Veness. Monte-carlo planning
in large pomdps. In J. Lafferty, C. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing
Systems, volume 23. Curran Associates, Inc., 2010.
URL https://proceedings.neurips.cc/paper/2010/file/
edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf.

[7] Trey Smith and Reid Simmons. Heuristic search value iter-
ation for pomdps. In Proceedings of the 20th Conference
on Uncertainty in Artificial Intelligence, UAI ’04, page
520–527, Arlington, Virginia, USA, 2004. AUAI Press.
ISBN 0974903906.

[8] Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee.
Despot: Online pomdp planning with regularization. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://proceedings.neurips.cc/paper/
2013/file/c2aee86157b4a40b78132f1e71a9e6f1-Paper.pdf.

[9] Yiming Wang, Francesco Giuliari, Riccardo Berra,
A. Castellini, A. D. Bue, A. Farinelli, M. Cristani, and
F. Setti. Pomp: Pomcp-based online motion planning
for active visual search in indoor environments. ArXiv,
abs/2009.08140, 2020.

https://www.sciencedirect.com/science/article/pii/S0921889021000853
https://www.sciencedirect.com/science/article/pii/S0921889021000853
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://proceedings.neurips.cc/paper/2010/file/edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/c2aee86157b4a40b78132f1e71a9e6f1-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/c2aee86157b4a40b78132f1e71a9e6f1-Paper.pdf

	Introduction and Overview
	Technical Approach
	Introduction to POMDP and POMCP
	POMCP Parallelization techniques
	Root Parallelization
	Tree Parallelization

	Preliminary results

	Conclusion and Next Steps

