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Future collaborative robots must be capable of finding objects. As such a fundamental skill,
we expect object search to eventually become an off-the-shelf capability for any robot, sim-
ilar to e.g., object detection, SLAM, and motion planning. However, existing approaches
either make unrealistic compromises (e.g., reduce the problem from 3D to 2D), resort to
ad-hoc, greedy search strategies, or attempt to learn end-to-end policies in simulation that
are yet to generalize across real robots and environments. This thesis argues that through
using Partially Observable Markov Decision Processes (POMDPs) to model object search
while exploiting structures in the human world (e.g., octrees, correlations) and in human-
robot interaction (e.g., spatial language), a practical and effective system for generalized
object search can be achieved. In support of this argument, I develop methods and systems
for (multi-)object search in 3D environments under uncertainty due to limited field of view,
occlusion, noisy, unreliable detectors, spatial correlations between objects, and possibly
ambiguous spatial language (e.g., "The red car is behind Chase Bank"). Besides evaluation
in simulators such as PyGame, AirSim, and AI2-THOR, I design and implement a robot-
independent, environment-agnostic system for generalized object search in 3D and deploy
it on the Boston Dynamics Spot robot, the Kinova MOVO robot, and the Universal Robots
UR5e robotic arm, to perform object search in different environments. The system enables,
for example, a Spot robot to find a toy cat hidden underneath a couch in a kitchen area in
under one minute. This thesis also broadly surveys the object search literature, proposing
taxonomies in object search problem settings, methods and systems.
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CHAPTER 1

Introduction

1.1 Significance and Challenges of Object Search

SEARCHING for objects has been a fundamental skill for people since ages ago. From
fruits to glasses, water sources to ore mines, the ability to search has enabled people’s

daily lives and provided much value to society. However, searching is unpleasant, to say
the least, and can be difficult or prohibitive depending on the situation. Imagine an elderly
person searching for their missing pair of glasses. Imagine a factory worker going back and
searching for their tools. Imagine a wildfire that devastates a neighborhood, and a search
and rescue team has to risk their lives in search of survivors. Now, imagine a robot that can
help. Autonomy in object search is therefore intrinsically valuable.

Besides its intrinsic value, object search is also a prerequisite for basically any task
involving the objects being searched for (a.k.a. the “target objects”). For intelligent, col-
laborative robots of the future, this means that a robot that can cook should better be able to
search for the ingredients and the pan before cooking, and a robot that can clean should be
able to find the cleaning tools. This point is well reflected in Figure 1.1a that shows six ex-
amples of a large language model (LLM) taking in a high-level task description (e.g.“pick

two apples then heat them”) and outputting a sequence of sentences each corresponding
to a lower-level action (P. Sharma et al., 2022). In all examples, the output begins with
“Find ...” (e.g.“Find the apple”, “Find the lettuce”, etc.) as the first action. The SayCan
system developed by Google (M. Ahn et al., 2022) with a similar capability exhibits the
same behavior (Figure 1.1b). Object search is literally the prerequisite skill.

While significant, object search is also challenging. The challenges of object search are
best illustrated through a practical scenario. Before diving into that, let us for a moment
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(a) Examples from (P. Sharma et al., 2022) showing that
an LLM breaks down given high-level descriptions into se-
quences of low-level actions. In all examples, the output be-
gins with “Find ...”. Source: slide from Jacob Andreas’s pre-
sentation at RLDM 2022. Courtesy of Jacob Andreas.

(b) Example trial of the SayCan system that
outputs a sequence of low-level skills feasible
for a robot given a high-level task (cleaning
spilled drink). Again, the output begins with
“Find ...”. Source: (M. Ahn et al., 2022).

Figure 1.1: The significance of object search is evident in part because it is a prerequisite
for basically any task involving the target objects. Two supporting examples
are provided above. In all cases, object search (i.e.. “Find ...”) comes first.

examine the phenomenon where “Find ...” is an atomic, low-level action. What happens
in Figure 1.1a is in part due to the use of the ALFRED dataset (Shridhar et al., 2020) to
train the LLM, where Amazon Mechanical Turkers provide step-by-step instructions (low-
level actions) for a video demonstration of a high-level task. However, rather than breaking
down the steps for object search into concrete commands such as “Go to ...” or “Turn

left”, the Turkers summarize those steps as “Find ...”, which is vague for execution. Inter-
estingly, SayCan (Figure 1.1b) exhibits the same phenomenon, using PaLM (Chowdhery
et al., 2022), a 540-billion parameter LLM trained with a huge dataset of natural language
in diverse contexts (e.g. books, webpages, etc.). Albeit speculative, one explanation is that
carrying out “Find ...” would likely entail other sub-tasks such as navigation (e.g. maneu-
vering the robot’s viewpoint), manipulation (e.g. opening a container), or another search
task, recursively (e.g. to find an apple, one sub-task could be to first find the fridge), which
is hard to elaborate when providing a single-step instruction. This duality of object search,
being both an atomic skill in people’s mind (and in LLM) as well as an abstract-level skill
in reality, makes it a unique problem to study in robotics.

Returning to the discussion of challenges, Figure 1.2 shows a typical real-world sce-
nario of object search. A Boston Dynamics Spot robot in our lab is tasked to find the book
which is located in front of a monitor as quickly as possible. In this version of Spot, the
most agile viewport, and the only colored one, is the camera on the mounted arm’s gripper.
The robot’s objective is to perform search by executing a sequence of view pose changes to
look around in the lab and eventually automatically declare the book to be found at some
location. The robot’s performance is evaluated based on success and efficiency. Several
challenges emerge as we consider building a real-world system effective for this task:

• Partial observability. Although, as a third-person audience, we immediately see
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Figure 1.2: An example real-world object search scenario. The Spot robot (yellow legged
robot) is tasked to find the book in front of a monitor (green arrow). The
robot searches by navigating and controlling its 6-DOF gripper camera to look
around within the room; the camera has a limited field of view subject to oc-
clusion and the robot’s perception pipeline is prone to uncertainty and errors.

where the book is, the robot has no knowledge of that and it has a limited field of
view through its gripper camera subject to occlusion. The robot must reason about
where to look under such partial observability.

• Perceptual uncertainty. Unlike the human eye, which can accurately distinguish
most recognizable objects within the field of view when close enough, the robot’s
perception system is subject to noise, uncertainty, and errors in object detection and
segmentation, even using state-of-the-art computer vision models. False negatives
and false positives are inevitable for most real-world robotic systems since they of-
ten receive images not in line with the training distribution of those models. Such
perceptual uncertainty is not limited to camera-based object detectors, and it is nec-
essary to be considered by the robot for effective search using its on-board sensors.

• Complex, unstructured environment. The environment that the robot operates in
is complex and unstructured, meaning that it does not just contain the robot itself
and the target object. It also contains many other objects arranged in an unstructured
fashion for the robot.

• Human input (e.g. language hints). Since the robot performs the search in a human
environment or alongside a human teammate, it would be beneficial for searching
more efficiently if the robot can take advantage of human input, for example, through
natural language hints (e.g., ”the book is in front of the monitor”).

• Generalization (across environments, across robots). We do not just want object
search to work for this robot in this room for this book. We want the ability to search
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to generalize across different environments and robots. Ultimately, the ability to
search should become an off-the-shelf capability that a robot can just have.

Addressing the above challenges with an emphasis on building principled, practical robotic
systems is at the core of this thesis (Chapters 3 to 7). Our effort aims to enable most robots
today with a movable viewport to perform object search in an off-the-shelf manner; we call
this problem generalized object search. This is a feasible objective today, thanks to recent
progress in mapping, navigation, motion planning, and object detection. It is also widely
applicable and a first step towards realizing the value of autonomy in object search.

Note that, however, object search can become even more difficult when additional chal-
lenges are factored in, such as when a human teammate can engage in a dialogue with the
robot, when target objects are dynamic or adversarial, when physical environment inter-
actions such as container opening, decluttering, or tool use are necessary and within the
robot’s arsenal of abilities, or when the robot performs search while exploring an unknown
region. In Chapter 2, I provide a broad review on object search, including methods desig-
nated to address these challenges. There is much left to do here for future work.

Most prior work in object search focuses on the kind of basic but essential setting in
Figure 1.2. As discussed next, despite the large body of literature, previous work fails
to address the above challenges in a realistic, practical and generalizable way. A more
thorough review and taxonomy of previous work in object search is provided in Chapter 2.

1.2 Limitations of Previous Work

Object search can be broken down into two subproblems: (1) which region(s) to search in,
and (2) how to search within a region.

For the first subproblem, there has been a long line of work (Wixson & Ballard, 1994;
Kollar & Roy, 2009; Aydemir et al., 2013; W. Liu et al., 2021), where the focus has been on
scalability and common sense: Can the robot reduce the uncertainty down to small search
region(s), such as a room, within a large search environment, such as an entire floor? Can
the robot make use of semantic knowledge (e.g. sponges are usually in kitchens) between
objects and places to select the search region(s)? The pioneering work along this line by
Wixson & Ballard (1994) made the following interesting remark:

Once such a subregion has been selected, however, a harder problem arises,
namely the problem of how to select views that search the subregion. This
problem is not really addressed here.

This remark nicely leads to the second subproblem, which is considered harder. Indeed,
object search in a 3D region by planning views under a time budget is shown to be NP-
Complete (Y. Ye & Tsotsos, 1997). Consequently, previous work uses ad-hoc, greedy
search strategies despite the problem being inherently sequential (Aydemir et al., 2011;
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Zeng et al., 2020). Other work makes unrealistic compromises, for example, by simplifying
the problem from 3D to 2D (Kollar & Roy, 2009; Wandzel et al., 2019; Bejjani et al., 2021),
or by manually specifying the set of viewpoints (Xiao et al., 2019).

Additionally, work such as (Saidi et al., 2007) and (Tsuru et al., 2021) focuses on
building real-world systems for object search but for specific humanoid robots. On the
other hand, data-driven approaches for semantic visual navigation that map raw RGB im-
ages directly to navigation actions are popular today yet most works have only conducted
evaluation in simulation (Yang et al., 2019; Chaplot et al., 2020; Mayo et al., 2021; Deitke
et al., 2022; Schmalstieg et al., 2022). Generalization of such models across different envi-
ronments and robots in the real-world poses a serious challenge.1

The focus of this thesis is on the problem of how to search within a region. Ultimately,
that determines the success of object search and is arguably harder, involving the low-level
challenges fundamental to an effective object search system. Compared to the data-driven
approaches which aim for model generalization (i.e., training a model that generalizes to
all test scenarios), our work differs fundamentally in that we pursue methodological gen-

eralization (i.e., proposing a method that is robot- and environment-independent).2 We
demonstrate generalization of our method by developing a system and package for gener-
alized object search and integrate it with different robots in different environments.3

1.3 Contributions

The central argument of this thesis is:

Through using Partially Observable Markov Decision Processes (POMDPs)
to model object search while exploiting structures in the human world and in
human-robot interaction, a practical and effective system for generalized object
search can be achieved.

In support of this argument, we briefly summarize the primary contributions of this thesis
as follows; Refer to Figure 1.3 for an overview of research projects covered in this thesis.

• We exploit the structure of octrees for 3D multi-object search and develop a scalable
and efficient multi-resolution planning algorithm with practicality for a real robot.

1. The issue of semantic visual navigation approaches being predominantly evaluated in simulation is recog-
nized and progress is being made to evaluate those methods in the real world through sim-to-real transfer
(Deitke et al., 2020; Gervet et al., 2022). However, current efforts are limited to a discrete, ego-centric
action space (e.g., move forward, turn left) and the real-robot evaluations involve only one robot platform
compatible with the agent in simulation. Changing the action space or the type of robot platform breaks
applicability and generalizability of the trained models, which already suffer in sim-to-real transform on
a compatible robot platform. Our approach places no such constraints.

2. I first learned about this dichotomy of generalization articulated by Leslie P. Kaelbling.
3. In the long run (when tackling object search problems involving tool use, for example), the two ends will

likely meet somewhere in the middle, I believe.

5



1.3. CONTRIBUTIONS

Chapter 4 (Zheng et al., 2021a)

Chapter 5 (Zheng et al., 2023)

Chapter 6 (Zheng et al., 2022)

Chapter 7 (Zheng et al., 2021b)

Chapter 8 (Roy*, Zheng*, et al., 2021)

Figure 1.3: Overview of research projects covered in this thesis. The projects are arranged
on an axis from robot acting in human environments to robot interacting with
humans. See Section 1.3 for a high-level overview of each project.
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• We then design and implement the first robot-independent and environment-agnostic
system for generalized 3D multi-object search and deploy it on various robot plat-
forms in different environments.

• We exploit the spatial correlation between easier-to-detect (e.g., microwave) and
hard-to-detect objects (e.g. pepper shaker) to find hard-to-detect objects faster.

• We integrate spatial language (e.g., “the book is in front of the monitor”) as an addi-
tional modality of stochastic observation for more efficient search.

• Moving along, we motivate and propose the dialogue object search task and draw
insights from a pilot study between pairs of human participants.

• We formulate a general, overarching POMDP model for generalized object search as
a “parent model” that ties together the above works on specific object search settings.

• We discuss how the above POMDP model be extended to address tasks involving
additional challenges such as object dynamics and environment interaction.

• Last but not least, we provide a literature review on object search from a robotics
perspective based on a survey of more than 125 related papers.

Here, we provide a high-level overview to elaborate the above contributions. For 3D multi-
object search, we introduce 3D Multi-Object Search (3D-MOS), a general POMDP for-
mulation of the problem with volumetric observation space, and we solve it with a novel
multi-resolution planning algorithm that uses a new belief representation called octree be-

lief. Our work demonstrates that such challenging POMDPs can be solved online efficiently
and scalably with practicality for a real robot by extending existing general POMDP solvers
with domain-specific structure and belief representation.

As a step further, we design and implement GenMOS (Generalized Multi-Ob-ject

Search), a robot-independent and environment-agnostic system of multi-object search in
3D regions. We evaluated the system by deploying it on several robotic platforms, includ-
ing the Boston Dynamics Spot robot, the Kinova MOVO robot, and the Universal Robotics
UR5e robotic arm. Our work makes 3D object search an off-the-shelf capability for differ-
ent robots in different environments.

To find small, hard-to-detect objects, we propose Correlational Object Search

POMDP (COS-POMDP), which can be solved to produce search strategies that exploit
spatial correlations between target objects and other objects in the environment that are
easier-to-detect. Our experiments were conducted in AI2-THOR (Kolve et al., 2017), a re-
alistic simulator featuring diverse-looking environments of four types: bedroom, bathroom,
kitchen and living room, and we use YOLOv5 (Jocher et al., 2020) as the object detector.
Results show that our method finds objects more successfully and efficiently compared to
baselines, particularly for hard-to-detect objects such as srub brush and remote control.

To consider human input, we integrate spatial language into the object search POMDP
model as a form of stochastic observation and derive a spatial language observation model.
We call the resulting model SLOOP (Spatial Language Object-Oriented POMDP).
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Evaluation based on crowdsourced language data, collected over areas of five cities in
OpenStreetMap, shows that our approach achieves faster search and higher success rate
compared to baselines, with a wider margin as the spatial language becomes more com-
plex. We demonstrate the proposed method in AirSim, a realistic simulator where a drone
is tasked to find cars in a neighborhood environment. We further deploy our system on a
Boston Dynamics Spot to accomplish tasks such as that in Figure 1.2.

To move farther along interaction with humans, we motivate and propose the task of
Dialogue Object Search where a robot must simultaneously decide what to say and how
to act while searching for an object in collaboration with a remote human assistant. We
conduct a pilot study between human participants and analyze how humans approach the
task in the place of the robot.

We tie together the problems and POMDP models proposed in the above works by
defining a single, overarching POMDP model (the “parent” model). We briefly discuss in
Chapter 9, as future work, how this parent model may be extended to additional challenges
and its potential limitations.

Finally, due to the fundamental value and broad applicability of object search yet a lack
of survey in this field, we conduct a literature review with the goal of organizing this field
from a robotics perspective, clarify the relationships between different problem variants
and approaches, and provide a taxonomy of object search.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

• In Chapter 2, we provide the background material of our research, including a lit-
erature review on object search and an introduction of POMDPs from a robotics
perspective.

• In Chapter 3, we give the definition of the overarching POMDP model for object
search, as hinted in the section above.

• In Chapter 4, we describe our work on 3D multi-object search and focus on ad-
dressing the algorithmic challenges of this problem that concludes with a real robot
demonstration. This chapter covers the paper Multi-Resolution POMDP Planning

for Multi-Object Search in 3D (Zheng et al., 2021a).

• In Chapter 5, we describe our work on further addressing the system-level challenges
to make 3D multi-object search an off-the-shelf system and package for robots. This
chapter covers the paper A System for Generalized 3D Multi-Object Search (Zheng
et al., 2023).

• In Chapter 6, we describe our work on correlational object search for finding small,
hard-to-detect objects such as a pepper shaker or a credit card. This chapter covers
the paper Towards Optimal Correlational Object Search (Zheng et al., 2022).

8



CHAPTER 1. INTRODUCTION

• In Chapter 7, we describe our work on interpreting spatial language object search
in city-scale environments. This chapter covers the paper Spatial Language Under-

standing for Object Search in Partially Observed Cityscale Environments (Zheng et
al., 2021b). We include a follow-up integration of this work with the Boston Dynamic
Spot robot to perform object search with spatial language understanding.

• In Chapter 8, we describe our work on introducing the dialogue object search task
and a pilot study. This chapter covers Dialogue Object Search (Roy*, Zheng*, et al.,
2021). Here, * denotes equal contribution.

• In Chapter 9, we conclude this thesis and remark on future work directions.

• Appendix A describes the pomdp_py library which supported the implementation
of all POMDP models and algorithms proposed in this thesis. It covers the paper
pomdp_py: A Framework to Build and Solve POMDP Problems (Zheng & Tellex,
2020). The library is available at: https://github.com/h2r/pomdp-py.

1.5 Remark on Terminology

For consistency throughout this theis, we use “viewpoint” to mean the same thing as “view

pose”, which is a 6D camera pose. We use "view position" to mean the 3D position of the
camera, and "view orientation" or "view direction" to mean the 3D rotation of the camera.

Additionally, we use “generalized” instead of “generalizeable” in the title of this
thesis to emphasize the fact that our POMDP models (e.g., 3D Multi-Object Search) are by
definition not specific to any particular robot or environment, and our approach is based on
general-purpose online POMDP planning algorithms (with problem-specific structure).

Finally, we refer the reader to Section 2.1.2 for a discussion of object search in relation
to other problems, some with similar names, to clarify possible confusion.

9
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CHAPTER 2

Background

2.1 Object Search in Robotics: A Review

DIRECTING searchers to find targets is a fundamental problem with broad applicability.
Researchers with diverse backgrounds have studied variants of this problem with

distinct emphases since the 1970s. If one zooms out, it does not take long before one finds
the literature on this topic to be a seemingly hodgepodge. Given such diversity and long
history, surveying past work is therefore valuable.

Although this thesis mainly concentrates on how to search within a region, we look
broadly here in the background chapter to take on the challenge of surveying this field.
The review below is the result of surveying more than 125 papers related to object search,
including taxonomies of different aspects of object search.

This chapter is organized as follows:

• We begin by clarifying what the term “object search” entails in robotics, disambiguat-
ing it from related and similar problems.

• We provide taxonomies of basic aspects in object search research, including problem
settings, methods and systems, and then apply them to organize papers from the field.

• Finally, we briefly summarize the history of research in object search so far.

Difference from Related Reviews

The closest literature reviews compared to ours are Chung et al. (2011) and Robin &
Lacroix (2016). Chung et al. (2011) focuses on pursuit-evasion in mobile robotics. They
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provide a taxonomy of pursuit-evasion and autonomous search problems that highlights
the differences resulting from varying assumptions on the searchers, targets, and the en-
vironment, with a discussion of robotic systems. This survey is excellent, yet it has been
more than a decade since it is written, and we pay direct attention on object search and not
pursuit-evasion.

Robin & Lacroix (2016) reviews major algorithms for different problem settings
related to target management, a term that summarizes both target detection and tracking.
Search is considered a variant of target detection where the target(s) are actively pursued.
However, this survey concerns providing a bird’s-eye view of the spectrum of problems
from target detection to tracking. In contrast, we focus on object search with the end goal
of achieving practical and effective robotic systems for this task.

2.1.1 The Elements of Object Search in Robotics

What does “object search” entail in robotics? Imagine a person searching for their missing
pair of glasses at home. It is most likely that the person would move around to search in
different places rather than standing at a fixed location, and then be able to identify the
glasses somehow, probably through vision. Analogously, when we think of “object search”
in robotics, we envision a robot being able to do the same thing. This, in the most basic
sense, should involve the following elements:

1. an object to be searched for,

2. an environment where the search happens,

3. a robot that can move itself in order to perceive different aspects of the physical
environment that would not be perceivable if the robot does not move, and

4. the robot begins without knowing where the object is, and

5. the robot decides what to do and executes actions sequentially in search for the object.

The above basic set of conditions makes a problem in robotics an object search problem.
Variants of object search, such as moving object search, multi-object search, mechanical
search (object search by clearing clutter), etc., append additional conditions to this set.

Broadly, object search could refer to the parent problem of all variants. In a narrow
sense, it refers to the problem setting in Figure 1.2 (Chapter 1), where no additional condi-
tions are added. Indeed, the variants usually do not come across plainly as object search,
but with a more characterizing name. For example, if the object actively moves, then the
problem is called moving object search (Ding & Castañón, 2018). If the object’s placement
varies over time, the problem is called dynamic object search (Y. Zhang et al., 2019).

2.1.2 Differentiating Object Search from Related Problems

Below, we describe how object search differs from several related problems that might
cause confusion. This is not an exhaustive list, but hopefully sufficient for clarification.
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Object Detection, Object Tracking, and Object Pose Estimation

Object search differs from problems such as object detection, object tracking, and object

pose estimation in that object search is fundamentally a decision-making problem, while
the rest are perception problems. The goal of object detection (Zou et al., 2019) is to
identify objects of certain classes given fixed raw sensor input, as an RGB image or a point
cloud. Object tracking refers to estimating the trajectory of an object in the image plane
or in the 3D space (Yilmaz et al., 2006; Weng et al., 2020). Object pose estimation (Rad
& Lepetit, 2017; Xiang et al., 2017) is about estimating the pose (3D or 6D) of objects
given sensor input. Both object detection and object pose estimation can serve as important
building blocks of an object search system.

Variants of object detection or object pose estimation, such as active object detection

where the sensor is controlled to maximize detection performance (Xu et al., 2021), do
involve decision-making and are often approached with similar techniques as object search,
such as next-best view (Doumanoglou et al., 2016), reinforcement learning (Luo et al.,
2019), and POMDP planning (Atanasov et al., 2014). However, in contrast to object search,
the environment typically revolves around the object to be detected, and the object typically
starts out inside the field of view of the sensor. A similar comparison can be made between
object search and the problem of active object reconstruction (Delmerico et al., 2018).

Object Retrieval and Object Localization

Object retrieval can be both a perception problem, choosing an object that matches a
description from a set of objects (Nguyen et al., 2022), or a decision-making problem
involving manipulation, where the robot is tasked to grasp and take out an object in clutter
(J. Ahn et al., 2022). Object retrieval is a more specific problem than object search since in
general, retrieval is not always necessary after the object is found. Often, object search is
part of an object retrieval system, considering occlusion from clutter (Bejjani et al., 2021).

The term object localization commonly refers to the computer vision problem where
the task is to produce a heatmap for an object’s location given image (Xue et al., 2019;
D. Zhang et al., 2021); active object localization (Caicedo & Lazebnik, 2015) has been
used to describe object detection models that can actively zoom in on an image for better
detection. In robotics, object localization is often a subproblem for object retrieval in clutter
(M.-Y. Liu et al., 2012; Du et al., 2021). It has been used as a synonym to object search
(Andreopoulos et al., 2010), though such usage is rare.

Target Capture, Target Pursuit and Target Detection

In target capture or target pursuit (Eaton & Zadeh, 1962), one or a group of agents co-
ordinate to surround one or multiple moving targets on a graph, where capture typically
means an agent occupies the same node as the target (Isaza et al., 2008), or the target is
enclosed by the agents (R. Sharma et al., 2010). This problem has important practical im-
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plications and has been studied by researchers in the game theory (Sticht et al., 1975), graph
theory (Svensson & Vegh, 2011), multi-agent control (Bono et al., 2022) communities. If
the target is adversarial, this becomes a classical problem called pursuit-evasion (Ho et
al., 1965). Historically, this line of work has used moving target search (MTS) (Ishida
& Korf, 1991) as the name of the target capture problem, causing some confusion with the
object search problem in robotics.1 Distinctively, however, object search in robotics differs
in that the locations of target objects are not known and uncertainty in robot perception is
inevitable, both aspects often not considered in that line of work.2 Additionally, in robotics,
the target and robot states are fundamentally metric and continuous instead of on top of a
discrete graph.

In addition, target detection is yet another problem with different meanings in different
communities. When the target is being actively detected by an agent, the problem is closer
to target search or target capture (discussed above) (Robin & Lacroix, 2016; Dadgar et
al., 2016). When the detection is passive, the problem is more closely related to sensor
placement (O’rourke et al., 1987; Sadeghi et al., 2020), detection mechanism (Koopman,
1956), and signal processing (Tian et al., 2002). The sensors can be sonars (Mukherjee
et al., 2011), radars (Bekkerman & Tabrikian, 2006), infrared (C. P. Chen et al., 2013),
cameras (Sun et al., 2016), etc.

Semantic Visual Navigation

Several problems share a similar practical motivation as object search but were originated
from different fields. Notably, in computer vision, the ObjectGoal (Anderson et al., 2018)
and ObjectNav (Batra et al., 2020) tasks, which are instances of semantic visual naviga-

tion (Chang et al., 2020), or sometimes just visual navigation (Gupta et al., 2017; Worts-
man et al., 2019), can be viewed as object search problems as well.3 Broadly speaking,
object search is a more general problem than semantic visual navigation as it does not re-
quire vision input or searching by navigation. Setting aside this technicality, researchers in
the two communities tend to make different assumptions in problem settings, leading to the
use of different methods. Many works in object search are planning-based, so a model of
the environment is given, and the evaluation culminates at real robot demonstrations. On
the other hand, end-to-end deep learning has been the predominant method for semantic
visual navigation as the agent searches in an unknown environment and leverages simula-
tors for large-scale training and benchmark testing (e.g., AI2THOR by Kolve et al. (2017),

1. Searching for “target search” on the web leads to papers from this community, although the literal mean-
ing of the phrase is nearly identical to object search.

2. Despite not considering uncertainty in perception, research in target capture strategy is valuable especially
when the agents are, for example, human teammates.

3. Semantic visual navigation is the problem where an agent is placed in an unknown environment and
tasked to navigate towards a given semantic target (such as “kitchen” or “chair”). The agent typically has
access to behavioral datasets for training on the order of millions of frames and the challenge is typically
in generalization. Practically, semantic visual navigation is motivated as a home robot application (Batra
et al., 2020) and serves the same purpose as object search using cameras in robotics.
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Habitat by Ramakrishnan et al. (2021), and Gibson by Xia et al. (2018), ThreeDWorld by
(Gan et al., 2020)). Both communities can learn from each other, although interactions
have currently been limited.4 Nevertheless, it is hopeful that as both approach the common
goal of a general robotic system for object search, more interaction will occur. This thesis
takes a step in that direction.

Active Visual Search

The terms visual search (J. Vogel & Murphy, 2007) visual object search (Druon et al.,
2020), active visual search (Sjöö et al., 2012), active visual object search (Aydemir et
al., 2011; Zeng et al., 2020), and active object search (Elfring et al., 2013), are all syn-
onymous to object search using a camera in robotics. Since cameras are predominantly
used by robots for perceptual tasks such as face recognition and object detection in human
environments, “visual” is often omitted (e.g., in Y. Ye & Tsotsos (1997)). Since object
search in robotics is inherently an active process, “active” is also often omitted. Note that
in psychological testing (Erickson, 1964; Williams, 1967; Duncan & Humphreys, 1989)
and computer vision (Tsotsos, 1992; Eckstein, 2011), “visual search” has historically re-
ferred to what we call object detection today. So, it makes sense that researchers coming
from those backgrounds prefix it with “active” to mean object search by a robot. For the
purpose of this thesis, we simply use object search (see Section 2.1.1 for elaboration).

2.1.3 A Taxonomy of Object Search Problem Settings

There are several dimensions along which we can classify object search problem settings:

1. number of objects: single or multiple;

2. number of robots: single or multiple;

3. property of the object(s): e.g. static, dynamic, or adversarial;

4. property of the robot(s): e.g. camera-only mobile robot (including drones), eye-in-
hand robotic arm, or mobile manipulator;

5. property of the environment: e.g. unknown, cluttered.

Due to the large number of dimensions, it quickly gets out of hand if we try to enumerate
all combinations. Instead, for clarity, we consider the following naming pattern:

[count] [object property] object search [other property]
secondary primary tertiary

4. For example, one improvement of ObjectNav over ObjectGoal is the introduction of intentionality as a
success criterion, which requires the agent to signal that the object is found. The same issue has been
previously considered in the object search literature in robotics (J. K. Li et al., 2016; Wandzel et al., 2019).
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Figure 2.1: A sketch of the relationship between the complexity of object search variants
and difficulty in building an actual system. A system that performs basic object
search is arguably more broadly applicable than an intricate variant.

This naming rule consists of four parts. The three parts surrounding “object search” are
used to characterize the specific problem setting, effectively appending conditions to the
basic set that define object search laid out in Section 2.1.1. These parts are organized by
the following ranking:5

• Primary: object property. An adjective that describes the object’s property. If not
provided, this adjective is assumed to be “static.”

• Secondary: count. An adjective that describes the number of robots and the number
of objects, in that order. If not provided, then both are assumed to be “single.” For
example, we would say, “multi-robot multi-object search” rather than “multi-object
multi-robot search.”6

• Tertiary: other property. A noun phrase that characterizes the robot, the environ-
ment, and (or) the task. For example, “open-world object search” means a robot
explores in an open-world while performing search;“object search in clutter” implies
that the environment is cluttered and the robot likely can manipulate clutter.

Figure 2.1 is a sketch of the relationships between different variants in terms of complexity,
system-level difficulty and applicability. In Table 2.3, we apply this taxonomy to organize
object search problem settings.

2.1.4 A Taxonomy of Object Search Methods

As object search is a sequential decision-making problem, common approaches to this class
of problems can be applied. We can therefore categorize the object search methods based

5. The ordering is analogous to a radiation field centered at “object search”, such that the radiation goes
from attributes of objects to attributes of the robot, finally to the attributes of the environment.

6. In general, clarity should come first especially in paper narration. That means instead of saying “multi-
robot multiple dynamic object search,” it is better and more natural to say “multi-robot search for dynamic
objects.” The fact that consistent problem naming is difficult shows the multitude of object search variants.
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on the type of decision-making algorithm used to generate the search strategy:

1. heuristics-based (e.g., bio-inspired);

2. mathematical analysis;

3. greedy, next-best view;

4. graph search;

5. POMDP planning;

6. reinforcement learning.

We elaborate the above methods through examples.

Heuristics-based. Goldsmith & Robinett (1998) studies multi-robot search for a static
object (a threat such as an explosive) and proposes an ad-hoc strategy that divides the
robots into two social groups: alpha and beta. Robots in the alpha group are risk takers,
while those in the beta group are conservative. Each group has a distinct rule-based policy
for when and when not to move. This kind of method is typically viewed as less favorable
compared to more principled approaches, but may work well in practice.

Mathematical analysis. Pollock (1970) formulated arguably the first model for mov-
ing object search where a target moves between two cells according to a Markovian model.
The problem here is framed as finding an allocation of the amount of effort (e.g., time) spent
searching at each cell, which is solved it through dynamic programming. Stone (1976)
generalized the problem and provides a thorough introduction on this topic. In this formu-
lation, the searcher is given a probability distribution over the target’s initial location, and
a detection function that characterizes the probability density of detecting the target given
a target location and an amount of effort. Later, Mangel (1981) considered the case where
the target moves as a diffusion process. Instead of finding a search plan (i.e., searcher’s
trajectory), the problem is to describe the probability density function f(x, S, t) that search
has been unsuccessful up to time t following a trajectory S, given that the target is at x at t
(the so-called “descriptive problem”). Analytical methods were dominant in the early days
when object search was studied in operations research, but results from this body of work
are often general yet abstract. Direct transfer to real robotic systems has been rare.

Greedy, next-best view. Y. Ye & Tsotsos (1997) formulated 3D object search as choos-
ing sensing actions over time under a cost budget; each action controls camera parameters
such as position and zoom in some way and has an associated cost and probability of de-
tecting the target. This is shown to be NP-Complete via a straightforward reduction to
the Knapsack problem. Follow-up works hence often favor a greedy search strategy to
build robotic systems for object search (Tsotsos et al., 1998; Shubina & Tsotsos, 2010;
Andreopoulos et al., 2010; Rasouli, 2015). Andreopoulos et al. (2010) builds a vision-
based system that enables a 26-DOF humanoid robot (the Honda ASIMO) to find an object
(e.g.cup) in a 3D region. The system maintains a probability map over a 4×4×4 grid,
and uses a greedy, one-step look-ahead algorithm to search. This algorithm first hypothe-
sizes a set of candidate sensor states, each made up of a body pose and a gaze pose, and
then selects a sensor state that maximizes the probability of localizing the target position.
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Greedy, next-best view algorithms are commonly used, often simple to implement and per-
form well in practice. Nevertheless, when the search actions carry different costs, or when
multiple objects need to be searched for, sequential planning can consider important factors
regarding action ordering that a greedy method does not.

Graph search. It is uncommon, but graph search algorithms such as A∗ have been
used for object search, primarily when searching for occluded object in clutter (Dogar
et al., 2014; Y.-C. Lin et al., 2015). Here, the search process is thought of as revealing
occluded space by removing a sequence of visible obstacles until the target object becomes
visible, where each removal action may carry a different cost.7 The greedy approach is
shown to be suboptimal (Dogar et al., 2014). Instead, imagine a graph where a node is a
subset of all visible objects, and an edge indicates the removal of a single object. Then, the
object search problem becomes a graph search problem of finding the shortest path from
the current node8 to the node corresponding to ∅ (all space revealed, target is therefore
considered found). This is the approach taken by both Dogar et al. (2014) and Y.-C. Lin et
al. (2015). It is elegant, yet requires the obstacles to be taken off from the environment at
every step and does not consider uncertainty in perception.

POMDP planning. N. Roy et al. (2005) uses belief compression to trade off belief
space dimensionality and information loss, allowing value iteration to be feasible in en-
abling a mobile robot to efficiently search for a person in a hallway-and-room environ-
ment. More recently, advances in online POMDP planning algorithms have sparked re-
search interest in applying them for object search (e.g., DESPOT (Somani et al., 2013) in
J. K. Li et al. (2016) and POMCP (Silver & Veness, 2010) in Wandzel et al. (2019)); refer
to Section 2.2.4 for a closer look at these algorithms.) For multi-robot search, POMDP
planning was unfavored computationally by Hollinger et al. (2009) but continue to receive
attention as both fields progress (Rizk et al., 2019). The appeal of POMDP planning-based
approaches is in their generalizability, versatility, and reasoning over action sequences. Un-
pleasant theoretical results (e.g., (Madani et al., 1999)) and practical computational chal-
lenges have been the main reasons of criticism to this kind of approach. Previous object
search works have sacrificed realism for efficiency (e.g., reducing the problem from 3D to
2D). This thesis uses POMDP’s strengths in robot task modeling and mitigates its weak-
nesses through exploiting structures to achieve practical, effective object search systems.

Reinforcement learning. Y. Zhu et al. (2017) is a seminal work in semantic visual
navigation9 that trained a goal-conditioned actor-critic model in the AI2-THOR simulator
and demonstrated sim-to-real generalization to a mobile robot. A large body of work fol-
lowed and developed various end-to-end, model-free techniques (Wortsman et al., 2019;
Mousavian et al., 2019; K. Chen et al., 2019; Chaplot et al., 2020; Liang et al., 2021); Sam-
ple complexity and real-world generalization are hurdles to overcome for this approach.
Recently, D. Shah et al. (2022) achieved impressive outdoor visual navigation results on a

7. The costs differ since removing different obstacles may affect visibility (how much volume will be re-
vealed) and accessibility (how accessible other obstacles will become) in different ways.

8. The current node corresponds to the current state (i.e., current subset of visible objects).
9. See Section 2.1.2 (page 13) for a discussion on semantic visual navigation in relation to object search.
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mobile robot through integrating pre-trained models like CLIP (Radford et al., 2021) with
a navigation planning pipeline (no sim-to-real). Separately, in target pursuit, Shkurti et
al. (2018) proposed a model-based reinforcement learning approach using POMDP plan-
ners.10 Although our work uses learned object detectors, we formulate POMDP models
analytically. In the long run, inspired by AlphaGo (Silver et al., 2017) and AlphaZero (Sil-
ver et al., 2018), we believe that combining online tree search-based POMDP planning with
learned models is a promising vein for research in object search, especially when physical
interaction in unstructured environments is involved.

2.1.5 A Taxonomy of Object Search Systems

Despite often motivated from in a robotics context, papers in object search without any real
robotic system demonstration outnumbers those that do. Nevertheless, the state-of-the-art
in object search is best reflected by what researchers can make real robots do, which do
vary a lot. It is therefore useful to come up with a taxonomy that captures a spectrum of
object search systems developed to evaluate object search algorithms.

It is straightforward that on one end of the spectrum, the system is idealistic; for exam-
ple, the robot and the target are points on a plane. It is more difficult to determine what is
the other end. Note that we are not classifying the object search system’s performance,11

but where it is deployed in. This includes considerations about what robotic capabilities
are involved, and what environments the system is expected to operate in.

Therefore, we consider the following taxonomy to categorize object search systems:

S0 idealistic simulation
S1 realistic simulation

N0 single, navigation-only robot in a single environment
N1 single, navigation-only robot in different environments
N2 different navigation-only robots in different environments

M0 single, manipulation-only robot in a single environment
M1 single, manipulation-only robot in different environments
M2 different manipulation-only robot in different environments

R0 single, mobile manipulator robot in a single environment
R1 single, mobile manipulator robot in different environments
R2 different real mobile manipulator robot in different environments

10. Note that the technique of model-based reinforcement learning with POMDP planning is equivalent to
that of POMDP planning with learned models (instead of analytical). However, typically in reinforcement
learning, the agent starts with no knowledge of the world and learns from scratch.

11. We do not attempt a taxonomy of the system’s performance because one could always hide a target object
so that a robot, or even a person, would fail to find it. Therefore, a system that “always finds objects” is not
a realistic goal. The highest expectation in performance is that the robot can find objects as efficiently or
more efficiently than a person, which is something we are so far away from today to be worth classifying.
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Table 2.1: A taxonomy of object search systems

This taxonomy is inspired by how levels of autonomous driving are concisely represented
(from L0 to L5) (Briney, 2004). The name of each category (e.g., S0, N1, etc.) consists
of a letter that represents the type of system and a number that represents the level of
generalization of that system. To elaborate, “S” = simulation, “N” = navigation-only, “M”
= manipulation-only, and “R” = mobile-manipulator (both navigation and manipulation).
The number starts from 0, goes up to 1 for “S”, and up to 2 for the rest.

A realistic simulation must be 3D, and the objects, motion, and events in the simulator
can easily be relatable to their counterparts in the real world. “Navigation-only” means no
manipulation is involved during the search process; This includes common mobile robots
but also, for example, an eye-in-hand robotic arm that only searches by looking through
its gripper camera but does not manipulate its surroundings. “Manipulation-only” means
the robot does not have a mobile base and it manipulates the environment during search,
such as removing clutter or opening containers. “Mobile manipulator” means the robot
has a mobile base and it manipulates the environment during search. Note that this does
not require the robot to have a robotic arm – a mobile robot that knows how to use its body
to clear up movable obstacles in search for an object also counts.

Note that we do not have a category for “different types of [...] robots in a single
environment.” This is because different robots typically are designed to be more suitable
for operation in some environments than others. It is more natural and sufficient to have a
robot be able to perform search in environments suitable for it. If a system can achieve this
for different robots, it achieves level 2. We provide an imaginary example for each below:

S0 the robot and the target are points on a plane or grids in a grid world.

S1 AI2-THOR, Habitat, Gibson, ThreeDWorld

N0 a turtlebot searches in an office.

N1 a turtlebot searches in an office and in a kitchen,12 or two different offices

N2 a turtlebot searches in an office and a drone searches outdoors.

M0 a Panda arm searches over a cluttered tabletop.

M1 a Panda arm searches over a cluttered tabletop and over a cluttered shelf.

M2 a Panda arm searches over a cluttered tabletop, and a UR5e robot searches

over a cluttered shelf.

R0 a MOVO searches in a room with a cluttered tabletop.

R1 a MOVO searches in a room with a cluttered tabletop and in a room with

two cabinets.

R2 a MOVO searches in a room with a cluttered tabletop, and a Spot searches

in a room with two cabinets.

Table 2.2: Examples for the categories in the taxonomy; Application in Table 2.3

12. This emphasizes the capability to search in different environments, not necessarily simultaneously.
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2.1.6 Application of the Taxonomies for Literature Survey

Below, we follow the taxonomies introduced in the previous sections to categorize papers
from the literature, which concludes this review. We only consider papers that assume
the target location to be initially unknown (excluding some papers on target capture). The
result of our survey is in the table below. We divide up problem names applying the three-
level taxonomy and we grouping references by methods used. The system classification is
indicated by the superscript.

Notably, to the best of our knowledge, our work (Zheng et al., 2023) is the first system
to achieve N2 among the class of navigation-only robots. For manipulation-only robots,
the current state of the art is limited to at most M0. Xiao et al. (2019) is the first and
only (so far) that achieves R0, in which a mobile manipulator robot, Fetch (Wise et al.,
2016), searches for a target object in a tabletop scene by removing clutter and looking
from different viewpoints. However, the setup is restricted to only two manually specified
viewpoints, one on each side of the table, from where the entire scene is captured under the
field of view. Works on multi-robot search and moving object search are yet to reach N1,
or any manipulation-involved search task. No work has reached R1 or R2, which can be
regarded as the holy grail in terms of object search systems.

THE TABLE STARTS FROM THE NEXT PAGE.
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name references

(Static) object search SINGLE-OBJECT

heuristics-based: (Nomatsu et al., 2015)N0 (Izquierdo-
Cordova et al., 2016)S0, (Wixson & Ballard, 1994)N0

analytical: (Y. Ye & Tsotsos, 1997)N0 (Hernandez et al.,
2021)S1

greedy: (Y. Ye & Tsotsos, 1997)N0 (Gelenbe & Cao, 1998)S0

(Saidi et al., 2007)N0 (Kollar & Roy, 2009)N0 (Andreopoulos
et al., 2010)N0 (Shubina & Tsotsos, 2010)N0 (Aydemir et al.,
2011)N1 (X. Chen & Lee, 2013)N0 (Zeng et al., 2020)S1,N0

graph search: (Gelenbe & Cao, 1998)S0 (Song et al., 2020)S0

(Y. Zhang et al., 2021)S1,N1 (D. Shah et al., 2022)N1

POMDP planning: (J. Vogel & Murphy, 2007)S1 (Aydemir
et al., 2013)N1 (Lu et al., 2018)N0 (C. Wang et al., 2018)S1,N0

(Holzherr et al., 2021)S0 (Zheng et al., 2022)S1

SINGLE-OBJECT (UNKNOWN ENVIRONMENT)

heuristics-based: (Y. Li et al., 2022)S1,N0

graph search: (Joho et al., 2011)N1 (Tsuru et al., 2021)N0

POMDP planning: (Y. Wang et al., 2020)S1 (Giuliari et al.,
2021)S1

reinforcement learning: (Y. Zhu et al., 2017)S1,N0 (X. Ye
et al., 2018)S1,N0 (Mousavian et al., 2019)S1 (K. Chen et
al., 2019)S1 (Chaplot et al., 2020)S1 (Schmid et al., 2019)S1

(Qiu et al., 2020)S1 (Liang et al., 2021)S1 (Schmalstieg et al.,
2022)S1,N0 (M. Zhu et al., 2022)S1,N0

SINGLE-OBJECT (IN CLUTTER)

heuristics-based: (Huang et al., 2022)M0

analytical: (Wong et al., 2013)S1

greedy: (Moldovan & De Raedt, 2014)S1

graph search: (Dogar et al., 2014)S0,M0 (Y.-C. Lin et al.,
2015)M0 (Nam et al., 2019)S0,M0 (Huang et al., 2021)S1,M0

POMDP planning: (J. K. Li et al., 2016)S1 (Nie et al.,
2016)S0 (Xiao et al., 2019)S1,R0 (Zhao & Chen, 2021)S1

reinforcement learning: (Novkovic et al., 2019)S1,M0

(Danielczuk et al., 2019)M0 (Kurenkov et al., 2020)S1 (Bejjani
et al., 2021)S0,M0

MULTI-OBJECT

POMDP planning: (Wandzel et al., 2019)S0,N0 (Zheng et
al., 2021a)S0,N0 (Zheng et al., 2021b)S1,N0 (Zheng et al.,
2023)S1,N2
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Multi-robot (static) SINGLE-OBJECT

object search heuristics-based: (Goldsmith & Robinett, 1998)S0 (G. Zhang
& Garg, 2008)S0

SINGLE-OBJECT (UNKNOWN ENVIRONMENT)

particle swarm optimization: (Shirsat et al., 2020)S1 (Tang
et al., 2021)S0 (Ebert et al., 2022)S0

MULTI-OBJECT

heuristics-based: (Rybski et al., 2002)N0

analytical: (Czyzowicz et al., 2016)

Moving object search SINGLE-OBJECT

analytical: (Pollock, 1970) (Dobbie, 1974) (Stone, 1979)
(Washburn, 1980) (Dogan & Zengin, 2006)S0 (Fidan et al.,
2013) (Radmard & Croft, 2017)N0

POMDP planning: (N. Roy et al., 2005)

Multi-robot moving SINGLE-OBJECT

object search heuristics-based: (Hereford & Siebold, 2010)S0,N0 (Kulich et
al., 2015)S0

analytical: (Zengin & Dogan, 2011)S0

greedy: (Sarmiento et al., 2004)S0 (Bourque, 2019)S0 (Kulich
et al., 2015)S0

graph search: (Hollinger et al., 2009)S0,N0

SINGLE-OBJECT (UNKNOWN ENVIRONMENT)

graph search: (Marjovi et al., 2009)S0,N0 (Kulich et al.,
2015)S0

particle swarm optimization: (Tang et al., 2021)S0

MULTI-OBJECT

analytical: (Dames, 2020)S0

MULTI-OBJECT (UNKNOWN ENVIRONMENT)

heuristics-based: (Baxter et al., 2007)S0

Ethical issues in object

search13
(Sharkey & Sharkey, 2011) (Harbers et al., 2017) (Battistuzzi
et al., 2021)

Table 2.3: Organization of papers from the object search literature using the proposed taxonomies

13. The topic “ethical issues in object search” is not technically an object search problem, but it is an impor-
tant dimension to it. Researchers referenced have started to discuss ethical challenges related to robot’s
help in search and rescue; helps by robots are not equally good.
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Figure 2.2: The perception-action loop. A robot is a system of sensors and actuators. The
sensors can receive observations (perception), and the actuators can change
the configuration of the robot, and perhaps, the external environment (action),
which affects subsequent observations.

2.2 Partially Observable Markov Decision Process

POMDP was originally introduced to model control systems with incomplete state informa-
tion in applied mathematics and operations research (Åström, 1965; Sondik, 1971; Small-
wood & Sondik, 1973) and later introduced to robotics by Kaelbling et al. (1998).14 A
POMDP models a sequential decision making problem where the environment state is not
fully observable by the agent, which is almost always the case if the agent is a robot in a
human environment. As a result, it has gained popularity in robotics.

In this section, I first motivate the use of POMDP in robotics from first principles. Then,
I provide a precise definition of a POMDP and discuss different methods to obtain policies
to a POMDP with an emphasis on practicality. A more comprehensive literature review of
POMDP in robotics can be found in Thrun et al. (2005); Kurniawati (2022); Lauri et al.
(2022).

2.2.1 Motivation from a Robotics Perspective

A robot is a system of sensors and actuators15 that operates in an environment. The robot
can perform actions through its actuators and receive observations from its on-board sen-
sors. The relationship between the robot and the environment can be illustrated by the
perception-action loop (Figure 2.2), common in the sequential decision making literature
(Littman, 1996; Kochenderfer, 2015).

14. See Littman (2009) for an excellent summary of the early literature on POMDPs.
15. “Actuator” here means more than mechanical ones, including e.g., speakers, virtual messaging, etc.
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Suppose the robot can choose an action from a set of possible actions, denoted asA, and
suppose it receives observations from a set of possible observations is denoted as Z . The
perspective in Figure 2.2 tells us that in the lifetime of a robot, it experiences a sequence
of actions and observations a1, z1, a2, z2, · · · (and nothing else). Define the history at time
t to be the sequence of past actions and observations, denoted as ht = (az)1:t−1.

The robot’s purpose is to produce a sequence of actions that best achieves some task
goal (over its lifetime). Suppose that the robot starts performing the task at time t.16 There
are two questions here: how to represent the goal and how to choose an action at each step.
Assuming that the robot behaves rationally, a common idea to address both questions is to
imagine that the robot observes a numeric reward each time it takes an action.17 Note that
this reward is conditioned on the history of the robot’s experience rather than just the action
taken. Then, the utility of an action sequence at, at+1, · · · can be defined as the sum of all
rewards rt+ rt+1 + · · · (cumulative rewards). To limit this sum to be finite, we introduce a
discount factor γ ∈ [0, 1). So, instead of observing rt+k (k ≥ 0), the robot observes γkrt+k.
The utility is then γ0rt + γ1rt+1 + · · · , the discounted cumulative reward.18

This utility establishes the ground for rational choice over action sequences by the
robot. As a consequence, following the utility theorem by Von Neumann & Morgenstern
(1947), the robot shall behave as if it is maximizing the expectation of the utility, that is,
maximizing the expectation of the discounted cumulative reward conditioned on history ht:

E

[

∞
∑

k=0

γkrt+k

∣

∣

∣
ht

]

(2.1)

As mentioned, each reward should be conditioned on the history of the robot’s experience.
Intuitively, however, it is inconvenient to specify the goal based directly on the sequence of
actions and observations the robot has experienced. This is because the robot’s performance
may depend on factors external to the robot, and accounting for all enumerations of history
quickly gets out of hand.

Instead, define the notion of a state, denoted by s ∈ S , which shall naturally capture the
necessary and potentially external information to specify a goal through a reward function

R such that rt = R(st, at). For example, if the robot’s goal is to clean a room, then whether
there still exists a dirty spot in the entire room could be a useful piece of information
to include in the state, even though the robot does not observe that information directly.
Clearly, the robot’s action may cause the state to change.

Since the robot does not observe the state (partial observability), the robot can at most
maintain a distribution over states given what it knows, that is, the history. This distribution
is called the belief state, denoted bt(s) = Pr(s|ht) ≡ Pr(s|bt), where bt acts as a sufficient

16. This is in fact the setting of online POMDP planning.
17. Whether rewards are sufficient to express all goals we would ever want a robot to achieve is a topic of

ongoing research (Silver et al., 2021; Abel et al., 2021; Bowling et al., 2022). This discussion is entirely
out of scope for this thesis.

18. Or, synonymously, the discounted return.
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statistic for history ht. The robot begins with an initial belief b1(s) = Pr(s) based on prior
knowledge, as the corresponding history h1 is empty.

Now, define V (bt) as the expected utility of the optimal behavior at time t:

V (bt) = max
at,at+1,···∈A

E

[

∞
∑

k=0

γkrt+k

∣

∣

∣
bt

]

(2.2)

Note that the expectation in Equation 2.2 is a variant of that in Equation 2.1 using the fact
that bt is a sufficient statistic for ht. We call V the value function and the value at bt means
the maximum expected utility at bt. From the definition of V in Equation 2.2, we can derive
the following expression, which turns out to be the Bellman equation for POMDPs:19

V (bt) = max
at∈A

{

∑

s∈S

bt(s)R(s, at) + γ
∑

z∈Z

Pr(z|bt, at)V (bat,zt+1)

}

(2.3)

where bat,zt+1(s) = Pr(st+1|bt, at, z) is the result of recursive Bayesian state estimation (i.e.,
belief update) based on bt after taking action at and receiving observation z at time t. I
provide a derivation of the Bellman equation in the appendix to this chapter (Section 2.2.5).
Equation 2.3 incorporates into the robot decision making objective two major types of
uncertainty, partial observability, through the belief state bt, and perceptual uncertainty,
through the probability distribution Pr(z|bt, at).

It is, however, difficult to define Pr(z|bt, at) directly. Instead, we can do the following
expansion to derive the components that depend on states which are easier to specify:

Pr(z|bt, at) =
∑

s∈S

bt(s)
∑

s′∈S

Pr(s′|s, at) Pr(z|s
′, at) (2.4)

Define O(s′, a, z) = Pr(z|s′, a) and call that the observation model. Then define
T (st, a, s

′) = Pr(s′|s, a) and call that the transition model, which exhibits the Markov
property. It so happens that a POMDP is formally defined as a tuple ⟨S,A,Z, T, O,R, γ⟩.
This framework therefore encapsulates through first principles what a robot must necessar-
ily consider to accomplish tasks during its lifetime.

Next, we provide a typical introduction of a POMDP for a quick review.

2.2.2 Formal Definition of POMDP

A POMDP models a sequential decision making problem where the environment state is
not fully observable by the agent. It is formally defined as a tuple ⟨S,A,Z, T, O,R, γ⟩,
where S,A,Z denote the state, action and observation spaces, and the functions
T (s, a, s′) = Pr(s′|s, a), O(s′, a, z) = Pr(z|s′, a), and R(s, a) ∈ R denote the transi-
tion, observation, and reward models. The agent takes an action a ∈ A that causes the

19. In general, S , A and Ω can be continuous.
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2.2. PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

environment state to transition from s ∈ S to s′ ∈ S . The environment in turn returns
the agent an observation z ∈ Z and reward r ∈ R. A history ht = (az)1:t−1 captures all
past actions and observations. The agent maintains a distribution over states given current
history bt(s) = Pr(s|ht). The agent updates its belief after taking an action and receiving
an observation by recursive Bayesian state estimation:

bt+1(s
′) = η Pr(z|s′, a)

∑

s∈S

Pr(s′|s, a)bt(s) (2.5)

where η =
∑

s

∑

s′ Pr(z|s
′, a) Pr(s′|s, a)bt(s) is the normalizing constant. The solution to

a POMDP is a policy π that maps a belief state or the corresponding history to an action.
The value of a POMDP at a belief under policy π is the expected discounted cumulative
reward following that policy:

Vπ(bt) = E

[

∞
∑

k=0

γkR(st+k, π(bt+k))
∣

∣

∣
bt

]

(2.6)

where γ ∈ [0, 1) is the discount factor. The optimal value at belief bt is
V (bt) = maxπ Vπ(bt). Equation 2.6 can also be written equivalently as Vπ(ht) =
E[
∑∞

k=0 γ
kR(st+k, π(ht+k))|ht]

2.2.3 Object-Oriented POMDP

An Object-Oriented POMDP (OO-POMDP) (Wandzel et al., 2019) (generalization of OO-
MDP (Diuk et al., 2008)) is a POMDP that considers the state and observation spaces to
be factored by a set of n objects, S = S1 × · · · × Sn, Z = Z1 × · · · × Zn, where each
object belongs to a class with a set of attributes. A simplifying assumption is made for
the 2D multi-object search domain (Wandzel et al., 2019) that objects are independent so
that the belief space scales linearly rather than exponentially in the number of objects:
bt(s) =

∏

i b
i
t(si). We make this assumption for the same computational reason when we

formulate multi-object search in 3D (Chapter 4).

2.2.4 Obtaining Policies to POMDPs

General-purpose algorithms for POMDP planning can be grouped into offline algorithms
and online algorithms. Data-driven approaches (e.g., end-to-end deep reinforcement learn-
ing) can be applied to learn POMDP policies for domains where POMDP models are hard
to define. Here, we provide an overview for the ideas behind major POMDP planning al-
gorithms.20 We spend more effort on tree search-based online algorithms as we use them to
produce object search policies, due to scalability to large domains, asymptotic optimality
and ease of implementation. For a more detailed review, please refer to Lauri et al. (2022).

20. We remarked on learning-based approaches for POMDP in our taxonomy of object search methods (Sec-
tion 2.1.4, page 15); Refer to Arulkumaran et al. (2017) and Mousavi et al. (2016) for more discussions.
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Offline Planning with Exact and Point-based Methods

Exact methods for solving POMDP include linear programming (Smallwood & Sondik,
1973) and value iteration (Cassandra et al., 1994). The basis of exact methods is that the
value function of a POMDP is piecewise linear and convex. To elaborate, the value function
under policy π as in Equation 2.6 can be written as a dot product:

Vπ(bt) = bt · απ (2.7)

where bt ·απ =
∑

s∈S bt(s)α(s) and απ is called an α-vector (Smallwood & Sondik, 1973).
Each element απ(s) equals to the expected discounted cumulative reward for state trajec-
tories sa1o1a2o2 · · · starting at s, with actions from π and observations according to O:21

απ(s) = R(s, ai) + γ
∑

s′∈S

T (s, ai, s
′)
∑

zi∈Z

O(s′, ai, zi)απ(s
′) (2.8)

Geometrically, Vπ is a hyperplane over the belief space, and the optimal value function can
be viewed as the upper envelope of the hyperplanes corresponding to all α-vectors, which
is piecewise linear and convex (refer to Kaelbling et al. (1998) for an illustration).

Exact methods compute all α-vectors that form the optimal value function. They often
produce policies that exhibit interesting behavior but are often too slow to be practical for
large domains (Ross et al., 2008). In fact, solving POMDPs exactly is likely unwise for
robotics problems since it is PSPACE-complete (Papadimitriou & Tsitsiklis, 1987), and
undecidable whether a desirable solution exists (Madani et al., 1999).

Point-based methods (Pineau et al., 2003; Spaan & Vlassis, 2005; Kurniawati et al.,
2008) take a different approach. Instead of computing the optimal value function over the
entire belief space, a set of belief states (i.e., points) are selected, and one α-vector is main-
tained per belief state. The set of α-vectors then approximates the optimal value function.
Point-based methods allow computing policies offline with tunable approximation and are
of sustained interest in robotics (Lauri et al., 2022), yet their effectiveness is limited to
small domains due to the intractability in belief update (Equation 2.5) for larger domains.

Online Planning with Sparse Tree Search-based Methods

In contrast to offline planning which aims to compute or approximate the optimal policy
given any belief state, online planning interleaves planning and execution, and cares about
outputting the action to be executed by the robot given its current belief state bt.

The idea behind sparse tree search-based algorithms for online POMDP planning is
simple and appealing (Figure 2.3). Online POMDP planning can be thought of as com-
puting the Q-value Q(bt, a) for any a ∈ A, i.e., the expected return after taking action a

21. The idea is that the policy π can be thought of as encoding a set of trees, each rooting at some belief b
and a path from the root ba1o1a2o2 · · · represents a belief trajectory with actions from π and observations
from Z . Given a state s sampled from b, a trajectory sa1o1a2o2 · · · can be defined the same way.
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Figure 2.3: Computing the exact value over the full belief tree (black + gray) is infeasible
for practical domains. Instead, approximating the value based on a subtree of
the full belief tree (black) is an intuitive and promising approach. This is the
idea behind sparse tree search-based online POMDP planning algorithms.

at belief state bt over all possible future belief trajectories. These trajectories form a belief

tree, illustrated in Figure 2.3. This tree can get wide and deep for large domains with long
horizons. Computing Q-values exactly becomes intractable as a result. One idea to work
around this is to approximate the full tree with a subtree, which represents an estimation of
the Q-values. This is a general and intuitive idea, and it is exactly what sparse tree search
algorithms do: A set of belief-based samples {s ∼ bt} individually travels down the subtree
to “experience the domain” and expands the subtree in the process. The difference between
specific algorithms boils down to two key issues regarding building the subtree: (1) how
a sample obtains its “experience” (i.e., an action-observation sequence) and (2) how the
rewards observed by a sample are incorporated into the estimation of value. Currently,
the two state-of-the-art sparse tree search-based algorithms are POUCT (Silver & Veness,
2010) and DESPOT (Somani et al., 2013; N. Ye et al., 2017). We briefly summarize how
each algorithm deals with the two issues above, which reflects their differences.

POUCT (Partially-Observable UCT) is based on Monte Carlo Tree Search (MCTS),
which is a general sample-based sequential decision making algorithm with a track record
of breaking state-of-the-art results in game playing, most notably the difficult game of Go
(Browne et al., 2012; Silver et al., 2017). POUCT is an extension of UCT (Upper Con-
fidence bounds for Trees) (Kocsis & Szepesvári, 2006) to partially observable domains,
which is a version of MCTS that uses the UCB1 algorithm (Auer et al., 2002) for action
selection. Effectively, POUCT addresses (1) with UCB1 and generator sampling, that is,

a ← argmaxaQ(b, a) + c
√

N(b)
N(ba)

, and (s′, z, r) ∼ G(s, a); The latter ensures sparse ob-

servation branching. It addresses (2) with the update rule Q̂(b, a) ← Q̂(b, a) + R−Q̂(b,a)
N(ba)
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that so that Q̂ is the average of the observed returns so far.22 Steps for POUCT are shown
in Algorithm 1 (Section 2.2.6). Note that POMCP is a specific version of POUCT with
particle-based belief representation. We use POUCT for its generality and our work does
not rely on particle beliefs.

DESPOT (Determinized Sparse Partially Observable Trees) is both known as a plan-
ning algorithm as well as the name for the belief subtree built by this algorithm. DESPOT
addresses issue (1) with action selection a← argmaxa U(b, a) based on an upper bound es-
timate U(b, a) of the Q-value Q(b, a), and observation selection based on a pre-determined
subset of observations; This subset is deterministic under a set ofK pre-specified scenarios

(i.e., random seeds), which leads to sparse observation branching ahead of time, instead of
during the tree search as done by POUCT. DESPOT addresses (2) by maintaining an upper
and lower bound on Q(b, a); Refer to Somani et al. (2013) for details on the lower bound.

POUCT is asymptotically optimal as the number of samples approaches infinity, while
DESPOT outputs a near-optimal policy if K is large enough. Subsequent works have ex-
tended both algorithms to handle continuous domains (Sunberg & Kochenderfer, 2018a;
Garg et al., 2019). Empirically, one is not shown to be strictly better than the other (Sun-
berg & Kochenderfer, 2018a), and both are affected by the rollout policy (a.k.a., default
policy) used. We build upon POUCT for planning due to its optimality and simplicity of
implementation, although our POMDP formulations are general.

22. Here, R is the observed return and N(b) denotes the visitation count to the node for belief b.
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2.2.5 Appendix: Derivation of the POMDP Bellman Equation

Below, I provide a derivation of the POMDP Bellman Equation in Equation 2.3. Start by
defining U(bt) to be the utility of some arbitrary action sequence given bt,

U(bt) = E

[

∞
∑

k=0

γkrt+k

∣

∣

∣
bt

]

(2.9)

Take out the first term of the summation,

= E

[

rt +
∞
∑

k=1

γkrt+k

∣

∣

∣
bt

]

(2.10)

By linearity of the expectation,

= E [rt|bt] + E

[

∞
∑

k=1

γkrt+k

∣

∣

∣
bt

]

(2.11)

Pull out γ and rewriting the summation index,

= E [rt|bt] + γE

[

∞
∑

k=0

γkrt+1+k

∣

∣

∣
bt

]

(2.12)

Recall the Tower property of conditional expectation: E[X|Y ] = E[E[X|Y, Z]|Y ]. In this
case, “X” is the summation, “Y ” is bt, and “Z” is bt+1. The utility starting at time t + 1
(summation) is conditionally independent of bt given bt+1, since the history corresponding
to bt+1 subsumes bt. Therefore, we drop bt in the inner conditional expectation:

= E [rt|bt] + γE

[

E

[

∞
∑

k=0

γkrt+1+k

∣

∣

∣
bt+1

] ∣

∣

∣

∣

∣

bt

]

(2.13)

Using the definition of U ,

= E [rt|bt] + γE
[

U(bt+1)
∣

∣bt
]

(2.14)
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Recall the definition of V (bt) in Equation 2.2. We have:

V (bt) = max
at,at+1,···∈A

U(bt) (2.15)

= max
at,at+1,···∈A

{

E [rt|bt] + γE
[

U(bt+1)
∣

∣bt
]}

(2.16)

= max
at

{

E [rt|bt] + max
at+1,at+2···∈A

γE
[

U(bt+1)
∣

∣bt
]

}

(2.17)

= max
at

{

∑

s∈S

bt(s)R(s, at) + max
at+1,at+2···∈A

γ
∑

z∈Z

Pr(z|bt, at)U(b
at,z
t+1)

}

(2.18)

= max
at

{

∑

s∈S

bt(s)R(s, at) + γ
∑

z∈Z

Pr(z|bt, at) max
at+1,at+2···∈A

U(bat,zt+1)

}

(2.19)

= max
at

{

∑

s∈S

bt(s)R(s, at) + γ
∑

z∈Z

Pr(z|bt, at)V (bat,zt+1)

}

(2.20)

2.2.6 Appendix: The POUCT Algorithm

In Algorithm 1, we provide the pseudocode for the POUCT (Partially Observable UCT)
(Silver & Veness, 2010) algorithm. This is the same algorithm as POMCP as presented
in Silver & Veness (2010) without particle belief representation. We slightly modified the
notation to match the that of Algorithm 3 (Chapter 4, page 49).

Additional notations:
Pr(s|h) belief state corresponding to history h
G black-box generator
d maximum tree depth (planning depth)
T belief tree
V value estimate
N visitation count
R observed discounted return
γ discount factor
πrollout rollout policy
hao a history from h following a and o
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Algorithm 1: Partially Observable UCT (G, h, d)→ a

procedure Search(h)
// Entry function of POUCT

repeat
s ∼ Pr(s|h); // Pr(s|h) is the belief state

Simulate(s, h, 0);
until TIMEOUT();
return argmaxa V (ha); // V (ha) is the Q-value of action a

procedure Simulate (s, h, depth)

if depth > d then
return 0

end

if h ̸∈ T then

foreach a ∈ A do

T (ha)← (Ninit(ha), Vinit(ha));
end

return Rollout (s, h, depth)

end

a← argmaxa V (ha) + c
√

logN(h)
N(ha)

;

(s′, o, r) ∼ G(s, a);
R← r + γ · Simulate(s′, hao, depth+ 1); // R is the discounted return

N(h)← N(h) + 1;
N(ha)← N(ha) + 1;

V (ha)← V (ha) + R−V (ha)
N(ha)

;
return R

procedure Rollout (s, h, depth)

if depth > H then
return 0

end

a← πrollout(h, ·);
(s′, o, r) ∼ G(s, a);
return r + γ · Rollout(s′, hao, depth+ 1);
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CHAPTER 3

Overarching Methodology

AT its core, this thesis argues for modeling object search as a POMDP while exploiting
structures for practicality. The idea is for the model to take advantage of structures in

human environments and human-robot interaction, while being independent of any specific
robot or environment. Then, a system or package that implements a solution strategy to this
POMDP can be general across, and thus integrable with, different robots and environments.
What does this POMDP look like, and how do we approach “solving” this POMDP? The
goal of this chapter is to address these questions.

3.1 A Generic POMDP Model for Object Search

First, what does this POMDP looks like? Here, let us consider the basic problem setting
as motivated in Figure 1.2 (Chapter 1, pp. 2-4), where a robot with a movable camera
searches for a single static target object. I describe a sufficient and generic formulation of
this POMDP as a starting point.1 This POMDP model can be considered the “parent” of the
variants in later chapters, which tackle specific problem settings (e.g., multi-object search,
searching in 3D, correlations, spatial language, etc.). This draws parallels with the “parent
problem” of object search variants in Background (Section 2.1.1, page 11). I briefly discuss
how this model can be extended to address the additional challenges in Chapter 9.

The formulation of this POMDP is as follows:

• State space S . A state s ∈ S , s = (srobot, starget) is factored into the robot state
srobot and the target state starget. The robot state contains the robot pose (position and

1. Refer to Section 2.2 for an introduction of POMDPs.
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3.1. A GENERIC POMDP MODEL FOR OBJECT SEARCH

orientation of the camera). The target state contains the location of the target object.

• Action space A. Generically, we consider just two action types LOOK and FIND;
The purpose of LOOK is to perceive some part of the search region, and the purpose
of FIND is to declare object(s) to be found at some location. When camera is used,
LOOK corresponds to changing the position and orientation of the camera, either
relative to the current pose or to some goal pose, and then project a field of view to
receive observations. Note that these actions are abstract and can be broken down
into finer-grained, parameterized action types as needed, as done, for example, in the
3D Multi-Object Search (3D-MOS) model (Section 4.3.3, page 42).

• Observation spaceO. An observation z = (zrobot, ztarget) is factored into the observa-
tion of the robot itself zrobot and the observation of the target object ztarget. For object
search, ztarget is typically the detected location of the object (though in 3D-MOS we
consider it to be a set of voxels in the field of view; see Section 4.3.2, page 41) and
zrobot should be an estimation of the robot state, for example, an estimated robot pose.

• Transition model T (s, a, s′). When the robot takes a LOOK action, the robot should
change its pose to the desired destination with some domain-specific noise. When the
robot takes FIND, the target should be marked as found if the condition for success is
satisfied, such as when the target object is within the field of view of the robot, which
should be determined based on the state s. The target is assumed to be static.

• Observation model O(s′, a, z). The robot observation is an estimate of the robot
state. So zrobot is independent of the target observation given the robot state. There-
fore, the observation model O(s′, a, z) can be factored as O(s′, a, z) = Pr(z|s′, a) =
Pr(zrobot|s

′
robot, a) Pr(ztarget|s

′, a). Here, Pr(zrobot|s
′
robot, a) can be regarded as a model

of the robot’s localization module, and Pr(ztarget|s
′, a) models the object detection

mechanism (e.g. through a field of view) and the uncertainty of object detection.

• Reward function R(s, a). The reward of a LOOK action should depend on the robot
state and the viewpoint changing action, which should reflect the cost needed to
complete the LOOK action, such as time or travel distance. Taking FIND signals a
commitment by the robot its belief of the object location. If correct, then the robot
successfully completes the task, receiving a high reward Rmax. However, the correct-
ness of declarations can be expensive to verify, for example, by a human teammate.
Therefore, taking FIND is also significantly more costly than LOOK actions, receiv-
ing a high penalty Rmin.

3.1.1 Remark

This model might seem simple, but it is not obvious. Since POMDP is such a general model
for robot behavior, it may be tempting to pack too much or too little information into the
model. The key is to determine the right level of abstraction this POMDP model should
live at in a practical robot system.
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Our insight is that the perception and action of an object search system should happen
at a level higher than the basic building blocks, such as localization, object detection, navi-
gation or low-level control. It should also be at a lower level of abstraction than a high-level
task such as “pick two apples and then heat them” (example from Figure 1.1a). The model
above echos that vision. This somewhat “middle-level” of abstraction of this object search
model also coincides with the duality of object search’s role in people’s mind, as discussed
in Chapter 1 (page 2).

3.1.2 Solution Method

This thesis takes the explicit, online planning approach to obtaining policies for POMDPs.
Concretely, this means to explicitly maintain the belief state and model the POMDP’s com-
ponents, such as programmatically define observation models based on analytical func-
tions, and then apply general-purpose online POMDP planning algorithms based on Monte
Carlo Tree Search to obtain an approximately optimal policy. To improve performance and
practicality, I develop and employ techniques such as multi-resolution planning, hierarchi-
cal planning, view position graph sampling, and using heuristic rollout policies depending
on the specific problem setting, discussed in the following Chapters (Chapters 4-7).

THIS IS THE END OF THIS CHAPTER.
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CHAPTER 4

3D Multi-Object Search

4.1 Motivation - Why 3D Object Search?

ROBOTS operating in human spaces must find objects such as glasses, books, or cleaning
supplies that could be on the floor, shelves, or tables. This search space is naturally

3D. When multiple objects must be searched for, such as a cup and a mobile phone, an
intuitive strategy is to first hypothesize likely search regions for each target object based on
semantic knowledge or past experience (Kollar & Roy, 2009; Aydemir et al., 2013), then
search carefully within those regions. Since the latter directly determines the success of the
search, it is essential for the robot to produce an efficient search policy within a designated
3D search region under limited field of view (FOV), where target objects could be partially
or completely occluded. In this chapter and next, we consider the problem setting where a
robot must search for multiple objects in a 3D search region by actively moving its camera,
with as few steps as possible (Figure 8.1).

This chapter begins by articulating both algorithmic and system-level challenges for 3D
multi-object search, followed by remark on previous work and a summary of our contribu-
tions. From then on, the chapter focuses on the theoretical side of this problem and tackling
algorithm-level challenges. The next chapter (Chapter 5) tackles system-level challenges
by presenting a system for generalized 3D multi-object search deployed on different robots.

4.1.1 Algorithm-Level Challenges

Searching for objects in a large search region requires acting over long horizons under var-
ious sources of uncertainty in a partially observable environment. For this reason, previous
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CHAPTER 4. 3D MULTI-OBJECT SEARCH

Figure 4.1: An example of the 3D-MOS problem where a torso-actuated mobile robot is
tasked to search for three objects placed at different heights in a lab environ-
ment. The objects are represented by paper AR tags marked by red boxes.
Note that the robot must actively move itself due to limited field of view, and
the objects can be occluded by the attached obstacles if viewed from the side.

works have used Partially Observable Markov Decision Process (POMDP) as a principled
decision-theoretic framework for object search (Xiao et al., 2019; Atanasov et al., 2014;
Danielczuk et al., 2019). However, to ensure the POMDP is manageable to solve, previous
works reduce the search space or robot mobility to 2D (Aydemir et al., 2013; Wandzel et
al., 2019; J. K. Li et al., 2016), although objects exist in rich 3D environments. The key
challenges lie in the intractability of maintaining exact belief due to large state space (Sil-
ver & Veness, 2010), and the high branching factor for planning due to large observation
space (Sunberg & Kochenderfer, 2018b; Garg et al., 2019).

4.1.2 System-Level Challenges

As such a valuable and fundamental skill for robots, we expect that eventually object search
becomes an off-the-shelf ability any robot can acquire to search for objects in the environ-
ment that it operates in, similar to other capabilities such as object detection, SLAM, and
motion planning. However, unlike the other aforementioned robotic capabilities, to the best
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of our knowledge, there is no general-purpose object search package available for robotics
researchers and practitioners. Sophisticated mobile robot platforms, such as the Kinova
MOVO (Kinova MOVO, 2017) and the Boston Dynamics Spot (Boston Dynamics Spot,
2019), do not come equipped with an object search system, despite their otherwise impres-
sive capabilities. This thesis takes the first step towards a robot-independent, environment-
agnostic system and package for generalized object search.

4.1.3 Remark on Previous Work

Searching for a single, static object in 3D by planning sensing parameters (e.g.position,
orientation, and zoom of a camera) under a time budget is NP-complete (Y. Ye & Tsotsos,
1997).1 Previous work primarily address the computational complexity of object search by
hypothesizing likely regions based on object co-occurrence (Kollar & Roy, 2009; Wixson
& Ballard, 1994), semantic knowledge (Aydemir et al., 2013) or language (Wandzel et
al., 2019), reducing the state space from 3D to 2D (Wandzel et al., 2019; C. Wang et al.,
2018; Sarmiento et al., 2003; Nie et al., 2016), or constrain the sensor to be stationary
(Danielczuk et al., 2019; Dogar et al., 2014). The work in this chapter focuses on multi-
object search within a 3D region where the robot actively moves the mounted camera, for
example, through pan or tilt, or by moving itself.

Several works explicitly reason over the arrangement of occluded objects based on
given geometry models of clutter (Xiao et al., 2019; Nie et al., 2016; Wong et al., 2013).
Our approach considers occlusion as part of the observation that contains no information
about target locations and we do not require geometry models.

Many works formulate object search as a POMDP. Notably, Aydemir et al. (2013) first
infer a room to search in then perform search by calculating candidate viewpoints in a
2D plane. J. K. Li et al. (2016) plan sensor movements online, yet assume objects are
placed at the same surface level in a container with partial occlusion. Xiao et al. (2019)
address object fetching on a cluttered tabletop where the robot’s FOV fully covers the
scene, and that occluding obstacles are removed permanently during search. Wandzel et
al. (2019) formulate the multi-object search (MOS) task on a 2D map using the proposed
Object-Oriented POMDP (OO-POMDP). We extend that work to 3D and tackle additional
challenges by proposing a new observation model and belief representation, and a multi-
resolution planning algorithm. In addition, our POMDP formulation allows fully occluded
objects and can be in principle applied on different robots such as mobile robots or drones.

Beginning with CARMEN (Montemerlo et al., 2003), open source libraries for SLAM
have greatly lowered the barrier to entry into robotics (Grisetti et al., 2007; Hess et al.,
2016). Similarly, for motion planning, libraries such as OMPL (Şucan et al., 2012) and
MoveIt! (Chitta, 2016) have broadened access to motion planning to a variety of different
robotic platforms. Our work aims to do the same thing for object search.

1. See Section 2.1.4 page 16 for elaboration.
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Wixson & Ballard (1994) remarked that selecting views for object search in a local
region is a harder problem than the selection of which region to search in. Most works that
demonstrate real-world robotic search are constrained within a 2D search region or reduce
some aspect of the problem (e.g., the observation or action space) (Aydemir et al., 2013;
Wandzel et al., 2019; J. K. Li et al., 2016; Zeng et al., 2020; Bejjani et al., 2021; Holzherr
et al., 2021; Giuliari et al., 2021; Schmalstieg et al., 2022).

Deep learning methods that typically map raw observations to actions (Yang et al.,
2019; Chaplot et al., 2020; Mayo et al., 2021; Deitke et al., 2022; Schmalstieg et al., 2022)
can enable 3D object search, yet it is hard to train such a model on a new robot and ensure
generalization to a new real-world environment; ongoing work (e.g., by Deitke et al. (2020);
Schmalstieg et al. (2022); Gervet et al. (2022)) is addressing this challenge through sim-to-
real transfer. In contrast, our approach only requires basic perception capabilities such as
object detection and localization to enable object search; point cloud observations can be
optionally considered by our system to be occlusion-aware.

4.2 Contributions

The contributions of our work are as follows:

• We introduce 3D Multi-Object Search (3D-MOS), a general POMDP formulation
for the multi-object search task with 3D state and action spaces, and a realistic ob-
servation space in the form of labeled voxels within the viewing frustum from a
mounted camera. Following the Object-Oriented POMDP (OO-POMDP) framework
proposed by Wandzel et al. (2019), the state, observation spaces are factored by inde-
pendent objects, allowing the belief space to scale linearly instead of exponentially
in the number of objects.

• We address the algorithmic challenges of computational complexity in solving 3D-
MOS by developing several techniques that converge to an online multi-resolution
planning algorithm:

◦ First, we propose a per-voxel observation model which drastically reduces the
size of the observation space necessary for planning.

◦ Next, we present a novel belief representation, called octree belief, that captures
beliefs at different resolutions and allows efficient and exact belief updates.

◦ Then, we exploit the octree structure and derive abstractions of the ground prob-
lem at different resolution levels leveraging abstraction theory for MDPs (L. Li
et al., 2006; Bai et al., 2016).

◦ Finally, a Monte-Carlo Tree Search (MCTS) based online planning algorithm,
called Partially-Observable Upper Confidence bounds for Trees (POUCT) (Sil-
ver & Veness, 2010), is employed to solve these abstract instances in parallel,
and the action with highest value in its MCTS tree is selected for execution.
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We evaluate the proposed algorithm in a simulated, discretized 3D domain where a
robot with a 6 DOF camera searches for objects of different shapes and sizes ran-
domly generated and placed in a grid environment. In addition, we demonstrate our
approach as a proof-of-concept system on a torso-actuated mobile robot in our lab.

• To address system-level challenges, we present GenMOS (Generalized Multi-Ob-

ject Search), a general-purpose object search system that is robot-independent and
environment-agnostic. GenMOS takes as input point cloud observations of the local
region (when available), 3D object detection bounding boxes (if detection occurs),
and localization of robot camera pose, and outputs a viewpoint to move to as the
result of sequential online planning. The point cloud observations are used in three
ways: (1) simulate occlusion; (2) inform occupancy and initialize octree belief; and
(3) sample a belief-based graph of view positions that avoids obstacles.

◦ I implemented this system as a software package based on gRPC (gPRC Docu-

mentation, n.d.); Besides evaluating it in simulation, I deployed it on the Boston
Dynamics Spot robot, the Kinova MOVO robot, and the Universal Robotics
UR5e robotic arm, performing object search in different environments.

4.3 Formulation of the 3D-MOS POMDP

The robot is tasked to search for n static target objects (e.g. cup and book) of known type
but unknown location in a search space that also contains static non-target obstacles. We
assume the robot has access to detectors for the objects that it is searching for. The search
region is a 3D grid map environment denoted by G. Let g ∈ G ⊆ R3 be a 3D grid cell
in the environment. We use Gl to denote a grid at resolution level l ∈ N, and gl ∈ Gl

to denote a grid cell at this level. When l is omitted, it is assumed that g is at the ground
resolution level. We introduce the 3D-MOS domain as an OO-POMDP as follows. See
Figure 4.2 for illustrations. This model is a multi-object extension and a 3D specialization
of the overarching object search POMDP described in Chapter 3.

4.3.1 State space S

An environment state s = {s1, · · · , sn, sr} is factored in an object-oriented way, where
sr ∈ Sr is the state of the robot, and si ∈ Si is the state of target object i. A robot
state is defined as sr = (p,F) ∈ Sr where p is the 6D camera pose and F is the set of
found objects. The robot state is assumed to be observable to the robot. In this work, we
consider the object state to be specified by one attribute, the 3D object pose at its center of
mass, corresponding to a cell in grid G. We denote a state sli ∈ S

l
i to be an object state at

resolution level l, where S li = Gl.

40



CHAPTER 4. 3D MULTI-OBJECT SEARCH

Figure 4.2: Example illustrations of the 3D-MOS POMDP model. The robot (represented
as a red cube) can project a viewing frustum to observe the search space, in
which objects are represented by sets of cubes. In these examples, the tuple
(m,n, d) at lower-right of each image means that the search space in total has
m×m×m grid cells, with n randomly placed objects, and the robot can project
a 45-degree frustum with a far plane at distance d grid cells to the robot. The
percentage of search space covered by each viewing frustum, parameterized by
field-of-view depth d, decreases as the world size increases.

4.3.2 Observation space O

The robot receives an observation through a viewing frustum projected from a mounted
camera. The viewing frustum forms the FOV of the robot, denoted by V , which consists of
|V | voxels. Note that the resolution of a voxel should be no lower than that of a 3D grid cell
g. We assume both resolutions to be the same in this chapter for notational convenience,
hence V ⊆ G, but in general a voxel with higher resolution can be easily mapped to a
corresponding grid cell.

For each voxel v ∈ V , a detection function d(v) labels the voxel to be either an object
i ∈ {1, · · · , n}, FREE, or UNKNOWN (Figure 4.3). FREE denotes that the voxel is a
free space or an obstacle. We include the label UNKNOWN to take into account occlusion
incurred by target objects or static obstacles. In this case, the corresponding voxel in V does
not give any information about the environment. An observation o = {(v, d(v))|v ∈ V } is
defined as a set of voxel-label tuples. This can be thought of as the result of voxelization
and object segmentation given a raw point cloud.

We can factor o by objects in the following way. First, given the robot state sr at which
o is received, the voxels in V have known locations. Under this condition, V can be reduced
to exclude voxels labeled UNKNOWN while still maintaining the same information. Then,
V can be decomposed by objects into V1, · · · , Vn where for any v ∈ Vi, d(v) ∈ {i, FREE}
which retain the same information as V for a given robot state.2 Hence, the observation
o =

⋃n

i=1 oi where oi = {(v, d(v))|v ∈ Vi}.

2. The FOV V is fixed for a given camera pose in the robot state, therefore excluding UNKNOWN voxels
does not lose information.
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Figure 4.3: Illustration of the viewing frustum and volumetric observation. The viewing
frustum V consists of |V | voxels, where each v ∈ V can be labeled as i ∈
{1, · · · , n}, FREE or UNKNOWN.

4.3.3 Action space A.

Searching for objects generally requires three basic capabilities: moving, looking, and
declaring an object to be found at some location. Formally, the action space consists of
these three types of primitive actions: MOVE(sr, g) action moves the robot from pose in
sr to destination g ∈ G stochastically. LOOK(θ) changes the camera pose to look in the
direction specified by θ ∈ R

3, and projects a viewing frustum V . FIND(i, g) declares object
i to be found at location g. The implementation of these actions may vary depending on
the type of search space or robot. Note that this formulation allows macro actions, such as
“look after move” to be composed for planning.

4.3.4 Transition function T .

Target objects and obstacles are static objects, thus Pr(s′i|s, a) = 1(s′i = si). For the robot,
the actions MOVE(sr, g) and LOOK(θ) change the camera location and direction to g and
θ following a domain-specific stochastic dynamics function. The action FIND(i, g) adds i
to the set of found objects in the robot state only if g is within the FOV determined by sr.
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4.3.5 Reward function R.

The correctness of declarations can only be determined by, for example, a human who has
knowledge about the target object or additional interactions with the object; therefore, we
consider declarations to be expensive. The robot receivesRmax ≫ 0 if an object is correctly
identified by a FIND action, otherwise the FIND action incurs a Rmin ≪ 0 penalty. MOVE

and LOOK receive a negative step costRstep < 0 dependent on the robot state and the action
itself. This is a sparse reward function.

4.3.6 Observation Model O

We have previously described how a volumetric observation o can be factored by objects
into o1, · · · , on. Here, we describe a method to model Pr(oi|s′, a), the probabilistic distri-
bution over an observation oi for object i.

Modeling a distribution over a 3D volume is a challenging problem (Park et al., 2019).
To develop an efficient model, we make the simplifying assumption that object i is con-
tained within a single voxel located at the grid cell g = s′i. We address the case of search-
ing for objects of unknown sizes with our planning algorithm (Section 4.5) that plans at
multiple resolutions in parallel.

Under this assumption, d(v) = FREE deterministically for v ̸= s′i, and the uncertainty
of oi is reduced to the uncertainty of d(s′i). As a result, Pr(oi|s′, a) can be simplified to
Pr(d(si)|s

′, a). When s′i ̸∈ Vi, either d(s′i) = UNKNOWN (occlusion) or s′i ̸∈ V (not in
FOV). In this case, there is no information regarding the value of d(s′i) in the observation oi,
therefore Pr(d(s′i)|s

′, a) is a uniform distribution. When s′i ∈ Vi, that is, the non-occluded
region within the FOV covers s′i, the case of d(s′i) = i indicates correct detection while
d(s′i) = FREE indicates sensing error. We let Pr(d(s′i) = i|s′, a) = α and Pr(d(s′i) =
FREE|s′, a) = β. It should be noted that α and β do not necessarily sum to one because
the belief update equation (Equation 2.5) does not require the observation model to be
normalized, as explained in Section 2.2.2. Thus, hyperparameters α and β independently
control the reliability of the observation model.

4.4 Octree Belief Representation

Particle belief representation (Silver & Veness, 2010; Somani et al., 2013) suffers from
particle depletion under large observation spaces. Moreover, if the resolution ofG is dense,
it may be possible that most of 3D grid cells do not contribute to the behavior of the robot.

We represent a belief state bit(si) for object i as an octree, referred to as an octree belief.
It can be constructed incrementally as observations are received and it tracks the belief of
object state at different resolution levels. Furthermore, it allows efficient belief sampling
and belief update using the per-voxel observation model (Sec. 4.3.6).
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Figure 4.4: Illustration the octree belief representation bit(si). The color on a node gl indi-
cates the belief VALit(g

l) that the object is located within gl. The highlighted
grid cells indicate parent-child relationship between a grid cell at resolution
level l = 1 (parent) and one at level l = 0.

An octree belief consists of an octree and a normalizer. An octree is a tree where every
node has 8 children. In our context, a node represents a grid cell gl ∈ Gl, where l is the
resolution level, such that gl covers a cubic volume of (2l)3 ground-level grid cells; the
ground resolution level is given by l = 0. The 8 children of the node equally subdivide the
volume at gl into smaller volumes at resolution level l− 1 (Figure 4.4). Each node stores a
value VALit(g

l) ∈ R, which represents the unnormalized belief that sli = gl, that is, object i
is located at grid cell gl. We denote the set of nodes at resolution level k < l that reside in
a subtree rooted at gl by CHk(gl). By definition, bit(g

l) = Pr(gl|ht) =
∑

c∈CHk(gl) Pr(c|ht).
Thus, with a normalizer NORMt =

∑

g∈G VALit(g), we can rewrite the normalized belief
as:

bit(g
l) =

VALit(g
l)

NORMt

=
∑

c∈CHk(gl)

(

VALit(c)

NORMt

)

, (4.1)

which means VALit(g
l) =

∑

c∈CHk(gl) VALit(c). In words, the value stored in a node is the
sum of values stored in its children. The normalizer equals to the sum of values stored in
the nodes at the ground resolution level.

The octree does not need to be constructed fully in order to query the probability at any
grid cell. This can be achieved by setting a default value VALi0(g) = 1 for all ground grid
cells g ∈ G not yet present in the octree. Then, any node corresponding to gl has a default
value of VALi0(g

l) =
∑

c∈CH0(gl) VALi0(c) = |CH0(gl)|.

44



CHAPTER 4. 3D MULTI-OBJECT SEARCH

For clarity (e.g., in Section 5.1.2), we provide the definition of default value and initial

value in an octree belief node as follows:

Definition 1 (Default value). The default value of an octree belief node VALi0(g
l) is the

value before the node is present in the octree.

Definition 2 (Initial value). The initial value of an octree belief node VALi1(g
l) is the value

when the node is inserted into the octree.

Note that the notation of initial value is consistent with that of initial belief as introduced
in Section 2.2.1, page 25.

4.4.1 Belief Update

We have defined a per-voxel observation model for Pr(oi|s
′, a) that reduces to

Pr(d(s′i)|s
′, a) if s′i ∈ Vi, or a uniform distribution if s′i ̸∈ Vi. This suggests that the

belief update need only happen for voxels that are inside the FOV to reflect the information
in the observation.

Upon receiving observation oi within the FOV Vi, belief is updated according to Algo-
rithm 2. This algorithm updates the value of the ground-level node g corresponding to each
voxel v ∈ Vi as VALit+1(g) = Pr(d(v)|s′, a)VALit(g). The normalizer is updated to make
sure bit+1 is normalized

Lemma 1. The normalizer NORMt at time t can be correctly updated by adding the incre-

mental update of values as in Algorithm 2.

Proof. The normalizer must be equal to the sum of node values at the ground level for
the next belief bit+1 to be valid (Equation 4.1). That is, NORMt+1 =

∑

si∈G
VALit+1(si).

This sum can be decomposed into two cases where the object i is inside of Vi and out-
side of Vi; For object locations si ̸∈ Vi, the unnormalized observation model is uni-
form, thus VALit+1(si) = Pr(d(si)|s

′, a)VALit(si) = VALit(si). Therefore, NORMt+1 =
∑

si∈Vi
VALit+1(si) +

∑

si ̸∈Vi
VALit(si). Note the set {si|si ̸∈ Vi} is equivalent as

{si|si ∈ G \ Vi}. Using this fact and the definition of NORMt, we obtain NORMt+1 =
NORMt +

∑

si∈Vi

(

VALit+1(si)− VALit(si)
)

which proves the lemma.

This belief update is therefore exact since the objects are static. The complexity of this
algorithm is O(|V | log(|G|); Inserting nodes and updating values of nodes can be done by
traversing the tree depth-wise.

4.4.2 Sampling

Octree belief affords exact belief sampling at any resolution level in logarithmic time com-
plexity with respect to the size of the search space |G|, despite not being completely built.
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Algorithm 2: OctreeBeliefUpdate (bit, a, oi)→ bit+1

input : bit: octree belief for object i; a: action taken by robot;
oi = {(v, d(v)|v ∈ Vi}: factored observation for object i

output: bit+1: updated octree belief
// Let Ψ(bt

i
) denote the octree underlying bi

t
.

for v ∈ Vi do
si ← v; // State at grid cell corresponding to voxel v

if si ̸∈ Ψ(bti) then

Insert node at si to Ψ(bti);
end

VALit+1(si)← Pr(d(v)|s′, a)VALit(si);
NORMt+1 ← NORMt + VALit+1(si)− VALit(si);

end

Given resolution level l, we sample from S li by traversing the octree in a depth-first manner.
Let lmax denote the maximum resolution level for the search space. Let ldes be the desired

resolution level at which an object state is sampled.3 If sldesi is sampled, then all nodes in
the octree that cover sldesi , i.e, slmax

i , · · · , sldes+2
i , sldes+1

i , must also be implicitly sampled,
Also, the event that sl+ki is sampled is independent from other samples given that sl+k+1

i is
sampled. Hence,

Pr(sldesi |ht)

= Pr(slmax

i , · · · , sldes+2
i , sldes+1

i , sldesi |ht)
(4.2)

= Pr(sldesi |s
ldes+1
i , ht)× Pr(sldes+1

i |sldes+2
i , ht)× · · · × Pr(slmax−1

i |slmax

i , ht) (4.3)

Therefore, the task of sampling sldes is translated into sampling a sequence of samples
slmax

i , · · · , sldes+2
i , sldes+1

i , sldesi , each according to the distribution Pr(sli|s
l+1
i , ht). We can

show that this distribution can be efficiently obtained using octree belief itself as follows:

Pr(sli|s
l+1
i , ht) =

Pr(sli, s
l+1
i |ht)

Pr(sl+1
i |ht)

(4.4)

=
Pr(sli|ht)

Pr(sl+1
i |ht)

(4.5)

=
VALit(s

l
i)/NORMt

VALit(s
l+1
i )/NORMt

(4.6)

=
VALit(s

l
i)

VALit(s
l+1
i )

(4.7)

Step 4.5 holds because sampling both sli and sl+1
i is equivalent to sampling just sli since the

latter (the event that sl+1
i is sampled) is deterministic when the former (the event that sli is

3. Recall that sampling a object state sl
i

here means that the object is considered to be located at sl
i
.
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sampled) happens. Sampling from this probability distribution is efficient, as the sample
space, i.e. the children of node sl+1

i is only of size 8. Therefore, this sampling scheme
yields a sample sldes exactly according to bit(s

ldes) with time complexity O(log(|G|)).

4.5 Using Octree Belief for Multi-Resolution Planning

POUCT expands an MCTS tree using a generative function (s′, o, r) ∼ G(s, a), which
is straightforward to acquire since we explicitly define the 3D-MOS models. However,
directly applying POUCT is subject to high branching factor due to the large observation
space in our domain.

Our intuition is that octree belief imposes a spatial state abstraction, which can be
used to derive an abstraction over observations, reducing the branching factor for planning.
Below, we formulate an abstract 3D-MOS with smaller spaces, and propose our multi-
resolution planning algorithm.

4.5.1 Abstract 3D-MOS

We adopt the abstraction scheme in L. Li et al. (2006) where in general, the abstract tran-
sition and reward functions are weighted sums of the original problem’s transition and re-
ward functions, respectively with weights that sum up to 1. We define an abstract 3D-MOS
⟨Ŝ, Â, Ô, T̂ , Ô, R, γ, l⟩ at resolution level l as follows.

State space Ŝ . For each object i, an abstraction function ϕi : Si → S li transforms the
ground-level object state si to an abstract object state sli at resolution level l. The abstraction
of the full state is ŝ = ϕ(s) = {sr} ∪

⋃

i ϕi(si) where the robot state sr is kept as is. The
inverse image ϕ−1

i (sli) is the set of ground states that correspond to sli under ϕi (L. Li et al.,
2006).

Action space Â. Since state abstraction lowers the resolution of the search space, we
consider macro move actions that move the robot over longer distance at each planning
step. Each macro move action MOVEOP(sr, g) is an option (Sutton et al., 1999) that moves
sr to goal location g using multiple MOVE actions. The primitive LOOK and FIND actions
are kept.

Transition function T̂ . Targets and obstacles are still static, and the robot state still
transitions according to the ground-level transition function. However, the transition of the
found set from F to F ′ is special since the action FIND(i, g) operates at the ground level
while sli has a lower resolution (l > 0). Let fi be the binary state variable that is true if and
only if object i ∈ F . Because the action FIND(i, g) affects fi based only on whether object
i is located at g, and that the problem is no longer Markovian due to state abstraction (Bai
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et al., 2016), fi transitions to f ′
i following

Pr(f ′
i |fi, s

l
i, ht, FIND(i, g)) (4.8)

=
∑

si∈φ
−1

i (sli)

Pr(f ′
i |si, fi, FIND(i, g)) Pr(si|s

l
i, ht). (4.9)

The above is consistent with the abstract transition function in the works (L. Li et al., 2006;
Bai et al., 2016) where the first term corresponds to the ground-level deterministic transition
function and the second term Pr(si|s

l
i, ht), stored in the octree belief, is the weight that

sums up to 1 for all si ∈ Si.

Observation space Ô and function Ô. For the purpose of planning, we again use the
assumption that an object is contained within a single voxel (yet at resolution level l). Then,
given state ŝ′, the abstract observation oli is regarded as a voxel-label pair (sli, d(s

l
i)). Since

it is computationally expensive to sum out all object states, we approximate the observation
model by ignoring objects other than i:

Pr(oli|ŝ
′, a, ht) = Pr(d(sli)|ŝ

′, a, ht) (4.10)

≈ Pr(d(sli)|s
l
i, sr, a, ht) (4.11)

=
∑

si∈φ
−1

i (sli)

Pr(d(sli)|si, sr, a) Pr(si|s
l
i, ht). (4.12)

This resembles the abstract transition function, where Pr(d(sli)|si, sr, a) is the ground ob-
servation function, and Pr(si|s

l
i, ht) is again the weight.

For practical POMDP planning, it can be inefficient to sample from this abstract ob-
servation model if l is large. In our implementation, we approximate this distribution by
Monte Carlo sampling (Shapiro, 2003): We sample k ground states from ϕ−1

i (sli) according
to their weights.4 Then we set d(sli) = i if the majority of these samples have d(si) = i,
and d(sli) = FREE otherwise. A similar approach is used for sampling from the abstract
transition model.

Reward function R. The reward function is the same as the one in ground 3D-MOS,
since computing the reward only depends on the robot state which is not abstracted and the
abstract action space consists of the same primitive actions as 3D-MOS. Therefore, solving
an abstract 3D-MOS is solving the same task as the original 3D-MOS.

4.5.2 Multi-Resolution Planning Algorithm

Abstract 3D-MOS is smaller than the original 3D-MOS which may provide benefit in on-
line planning. However, it may be difficult to define a single resolution level, due to the
uncertainty of the size or shape of objects, and the unknown distance between the robot and
these objects.

4. We tested k = 10 and k = 40 and observed similar search performance. We used k = 10 in our
experiments.
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Algorithm 3: MR-POUCT (P , bt, d)→ â

input : P: a set of abstract 3D-MOS instances at different resolution levels; bt:
belief at time t; d: planning depth

output: â: an action in the action space of some Pl ∈ P
procedure Plan(bt)

foreach Pl ∈ P in parallel do

// Recall that Pl = ⟨Ŝ, Â, Ô, T̂ , Ô, R, γ, l⟩

G ← GenerativeFunction(Pl);
QP (bt, â)← POUCT(G, ht, d);

end

â← argmaxâ{QP (bt, â)|P ∈ P};
return â

Therefore, we propose to solve a number of abstract 3D-MOS problems in parallel, and
select an action from Â with the highest value for execution. The algorithm is formally
presented in Algorithm 3. The set of abstract 3D-MOS problems, P , can be defined based
on the dimensionality of the search space and the particular object search setting. Then,
it is straightforward to define a generative function G(ŝ, â) → (ŝ′, ô, r) from an abstract
3D-MOS instance P using its transition, observation and reward functions. POUCT uses
G to build a search tree and plan the next action. Thus, all problems in P are solved online
in parallel, each by a separate POUCT. The final action with the highest value QP (bt, â) in
its respective POUCT search tree is chosen as the output (see (Silver & Veness, 2010) for
details on POUCT). We call this algorithm Multi-Resolution POUCT (MR-POUCT).

Next, we describe evaluation for this proposed multi-resolution planning algorithm.
We assess the hypothesis that our approach, MR-POUCT, improves the robot’s ability to
efficiently and successfully find objects especially in large search spaces. We conduct a
simulation evaluation (Section 4.5.3) and a study on a real robot (Section 4.5.4).

4.5.3 Evaluation in Simulation

Setup

We implement our approach in a simulated environment designed to reflect the essence
of the 3D-MOS domain (Figure 4.2). Each simulated problem instance is defined by a
tuple (m,n, d), where the search region G has size |G| = m3 with n randomly generated,
randomly placed objects. The on-board camera projects a viewing frustum with 45 degree
FOV angle, an 1.0 aspect ratio, a minimum range of 1 grid cell, and a maximum range of d
grid cells. Hence, we can increase the difficulty of the problem by increasing m and n, or
by reducing the percentage of voxels covered by a viewing frustum through reducing the
FOV range d. Occlusion is simulated using perspective projection and treating each grid
cell as a point.
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There are two primitive MOVE actions per axis (e.g. +z, −z) that each moves the
robot along that axis by one grid cell. There are two LOOK actions per axis, one for each
direction. Finally, a FIND action is defined that declares all not-yet-found objects within
the viewing frustum as found. Thus, the total number of primitive actions is 13. MOVE

and LOOK actions have a step cost of -1. A successful FIND receives +1000 while a failed
attempt receives -1000. A FIND action is successful if part of a new object lies within the
viewing frustum. If multiple new objects are present within one viewing frustum when the
FIND is taken, only the maximum reward of +1000 is received. The task terminates either
when the total planning time limit is reached or n FIND actions are taken.

Baselines

We compare our approach (MR-POUCT) with the following baselines: POUCT uses the
octree belief but solves the ground POMDP directly using the original POUCT algorithm.
Options+POUCT uses the octree belief and a resolution hierarchy, but only the motion
action abstraction (i.e. MOVEOP options) is used, meaning that the agent can move for
longer distances per planning step but do not make use of state and observation abstrac-
tions. POMCP uses a particle belief representation which is subject to particle deprivation.
Uniform random rollout policy is used for all POMDP-based methods. Exhaustive uses a
hand-coded exhaustive policy, where the agent traverses every location in the search en-
vironment. At every location, the agent takes a sequence of LOOK actions, one in each
direction. Finally, Random executes actions at uniformly at random.

Each algorithm begins with uniform prior and is allowed a maximum of 3.0s for plan-
ning each step. The total amount of allowed planning time plus time spent on belief update
is 120s, 240s, 360s, and 480s for environment sizes (m) of 4, 8, 16, or 32, respectively.
Belief update is not necessary for Exhaustive and Random. The maximum number of plan-
ning steps is 500. The discount factor γ is set to 0.99. For each (m,n, d) setting, 40 trials
(with random world generation) are conducted.

Results

We evaluate the scalability of our approach with 4 different settings of search space size
m ∈ {4, 8, 16, 32} and 3 settings of number of objects n ∈ {2, 4, 6}, resulting in 12 com-
binations. The FOV range d is chosen such that the percentage of the grids covered by one
projection of the viewing frustum decreases as the world size m increases.5 The sensor
is assumed to be near-perfect, with α = 105 and β = 0. We measure the discounted cu-
mulative reward, which reflects both the search efficiency and effectiveness, as well as the
number of objects found per trial.

Results are shown in Figure 4.5. Particle deprivation happens quickly due to large
observation space, and the behavior degenerates to a random agent, causing POMCP to

5. The maximum FOV coverage for m = 4, 8, 16, and 32 is 17.2%(d = 4), 8.8%(d = 6), 4.7%(d = 10),
and 2.6%(d = 16), respectively.
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perform poorly. In small-scale domains, the Exhaustive approach works well, outperform-
ing the POMDP-based methods. We find that in those environments, the FOV can cap-
ture a significant portion of the environment, making exhaustive search desirable. The
POMDP-based approaches are competitive or better in the two largest search environments
(m = 16 and m = 32). In particular, MR-POUCT outperforms Exhaustive in all test cases
in the larger environments, with greater margin in discounted cumulative reward; Exhaus-

tive takes more search steps but is less efficient. When the search space contains fewer
objects, MR-POUCT and POUCT show more resilience than Options+POUCT, with MR-
POUCT performing consistently better. This demonstrates the benefit of planning with the
resolution hierarchy in octree belief especially in large search environments.

Figure 4.5: Discounted cumulative reward and number of detected objects as the environ-
ment size (m) increases and as the of number of objects (n) increases. Exhaus-
tive search performs well in small-scale environments (4 and 8) where explo-
ration strategy is not taken advantage of. In large environments, our method
MR-POUCT performs better than the baselines in most cases. The error bars
are 95% confidence intervals. The level of statistical significance is shown,
comparing MR-POUCT against POUCT, Options+POUCT, and Exhaustive,
respectively, indicated by ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), ***
(p ≤ 0.001), **** (p ≤ 0.0001).
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Figure 4.6: Discounted cumulative reward with 95% confidence interval as the sensing
uncertainty increases, aggregating over the β settings.

We then investigate the performance of our method with respect to changes in sensing
uncertainty, controlled by the parameters α and β of the observation model. According to
the belief update algorithm in Section 4.4.1, a noisy but functional sensor should increase
the belief VALit(g) for object i if an observed voxel at g is labeled i, while decrease the belief
if labeled FREE. This implies that a properly working sensor should satisfy α > 1 and
β < 1. We investigate on 5 settings of α ∈ {10, 100, 500, 103, 104, 105} and 2 settings of
β ∈ {0.3, 0.8}. A fixed problem difficulty of (16, 2, 10) is used to conduct this experiment.
Results in Figure 4.6 show that MR-POUCT is consistently better in all parameter settings.
We observe that β has almost no impact to any algorithm’s performance as long as β < 1,
whereas decreasing α changes the agent behavior such that it must decide to LOOK multiple
times before being certain.

4.5.4 Demonstration on Real-Robot

We demonstrate that our approach is scalable to real world settings by implementing the
3D-MOS problem as well as MR-POUCT for a mobile robot setting. We use the Kinova
MOVO Mobile Manipulator robot, which has an actuated torso with an extension range
between around 0.05m and 0.5m, which facilitates a 3D action space. The robot operates in
a lab environment, which is decomposed into two search regionsG1 andG2 of size roughly
10m2× 2m (Figure. 4.7), each with a semantic label (“shelf-area” for G1 and “whiteboard-
area” for G2). The robot is tasked to look for nG1

and nG2
objects in each search region

sequentially, where objects are represented by paper AR tags that could be in clutter or not
detectable at an angle. The robot instantiates an instance of the 3D-MOS problem once
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it navigates to a search region. In this 3D-MOS implementation, the MOVE actions are
implemented based on a topological graph on top of a metric occupancy grid map. The

Figure 4.7: Example action sequence produced by the proposed approach that enables a
Kinova MOVO robot to perform 3D object search in two search regions sep-
arately (top left). The mobile robot first navigates in front of a portable table
(1-2). It then takes a LOOK action to observe the space in front (3), and no
target is observed since the torso is too high. The robot then decides to lower
its torso (4), takes another LOOK action in the same direction, and then FIND

to mark the object as found (5). This sequence of actions demonstrate that our
algorithm can produce efficient search strategies in real world scenarios.

neighbors of a graph node form the motion action space when the robot is at that node.
The robot can take LOOK action in 4 cardinal directions in place and receive volumetric
observations; A volumetric observation is a result of downsampling and thresholding points
in the corresponding point cloud. The robot was able to find 3 out of 6 total objects in the
two search regions in around 15 minutes. One sequence of actions (Figure 4.7) shows that
the robot decides to lower its torso in order to LOOK and FIND an object.6 A failure mode
is that the object may not be covered by any viewpoint and thus not detected; this can be

6. Video footage with visualization of volumetric observations and octree belief update is available at
https://zkytony.github.io/3D-MOS/.
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improved with a denser topological map, or by considering destinations of MOVE actions
sampled from the continuous search region.

In the next chapter, we present a system for generalized 3D multi-object search, the
first of its kind, and discuss its integration with different robots performing object search in
different environments.

THIS IS THE END OF THIS CHAPTER.
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CHAPTER 5

GenMOS: A System for Generalized 3D

Multi-Object Search

Figure 5.1: GenMOS enables different robots to search for objects in various 3D regions.

5.1 The GenMOS System

TOWARDS the goal of making object search an off-the-shelf capability for any robot, we
present GenMOS (Generalized Multi-Object Search), the first general-purpose object
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Figure 5.2: Our system, GenMOS, enables a Boston Dynamics Spot robot to successfully
find a toy cat underneath the couch. The left image shows a third-person view
of the scene. The right image shows the RGB image from the gripper camera,
along with the object detection bounding box for the cat labeled.

search system that is robot-independent and environment-agnostic (Figure 5.1). GenMOS
builds upon the methodology for 3D multi-object search described in the previous chapter,
while significantly improving its practicality in the real world. Our system enables a Boston
Dynamics Spot to find, for example, a cat underneath the couch, as shown in Figure 6.1.

This chapter begins with an overview of the system’s design, illustrated in Figure 5.3.
In particular, we describe three ways that point cloud observations are used in GenMOS:

(1) to simulate occlusion (Figure 5.4);
(2) to inform occupancy and initialize octree belief (Figure 5.5);
(3) to sample a belief-based graph of view positions (Figure 5.9, right column).

Then, we describe novel algorithmic contributions regarding (2) and (3): For (2), we pro-
pose an algorithm for initializing octree beliefs given arbitrary prior distributions over ob-
ject locations; For (3), we propose an algorithm which samples a belief-dependent graph
of view positions, allowing the output space of GenMOS to be the continuous space of
reachable viewpoints. Subsequently, we describe the gRPC protocol of our implementa-
tion of GenMOS as well as a few useful parameters one can configure to adapt GenMOS
to a specific scenario. Finally, we discuss our evaluation of GenMOS, first in a simulation
domain, then integrated on three robot platforms: Boston Dynamics Spot, Kinova MOVO,
and Universal Robotics UR5e.

Contributions. The contributions of this chapter were described in Section 4.2. We
emphasize here that the algorithms and evaluation in this chapter serve to improve and
demonstrate the practicality of the octree-based 3D multi-object search approach intro-
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Figure 5.3: Overview of the GenMOS system. See Section 5.1.1 for description.

duced in the previous chapter, which was only evaluated in an idealistic simulation with
cardinal action space and on a MOVO with a proof-of-concept system.

5.1.1 System Overview

A gRPC-based system. GenMOS is a client-server construct, designed and implemented
based on gRPC (gPRC Documentation, n.d.), a high-performance, cross-platform, and
open source framework for remote procedural call (RPC). As a gRPC-based system (Fig-
ure 5.3), GenMOS is independent of, thus integrable to any particular robot middleware
such as ROS (Quigley et al., 2009) or ROS 2 (Macenski et al., 2022).

Inputs and outputs. GenMOS considers perceptual inputs including point cloud ob-
servations of the local region, 3D object detection bounding boxes (if detection occurs),
and localization of robot camera pose, and it outputs a viewpoint to move to as the result
of sequential online planning.

Server

Here, I describe several important aspects of the GenMOS server.

3D-MOS. The server internally maintains a POMDP model of the search task, which is
a 3D-MOS with an instantiation of the action space based on a graph of view positions
(Section 5.1.3). The definition and implementation of this model, based on pomdp_py

(Zheng & Tellex, 2020), is general and does not depend on any particular environment.
Importantly, the server handles coordinate conversion: the client only needs to send data in
the metric world frame and the server properly converts them into the POMDP’s frame.

Occupancy octree from point cloud. Internally, the server maintains an octree repre-
sentation of the search region’s occupancy, used to simulate occlusion-enabled observations
for belief update. Point cloud observations can be sent to the server to update the server’s
model of the search region. Specifically, the server converts the point cloud into an occu-
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Figure 5.4: For belief update, GenMOS samples a volumetric observation (a set of labeled
voxels within the viewing frustum) that considers occlusion based on the occu-
pancy octree dynamically built from point cloud (A). Not enabling occlusion
(D) leads to mistaken invisible locations as free. The robot is looking at a table
corner (B) with its view blocked by the table and the board (C).

pancy octree (similar to OctoMap (Hornung et al., 2013)), where a leaf node in the tree has
an associated value of occupancy (0 for free, and 1 for occupied). The occupancy octree is
used by the server for both sampling the view positions graph to avoid collision, as well as
for constructing volumetric observations during belief update, where occupied nodes block
the FOV and cause occlusion (Figure. 5.4).

Additional uses of point cloud. A key aspect of GenMOS is how point cloud obser-
vations are used in three ways: (1) to simulate occlusion; (2) to inform occupancy and
initialize octree belief; and (3) to sample a belief-based graph of view positions. We have
illustrated (1) above. For (2) and (3), we discuss in more detail in Section 5.1.2 and Sec-
tion 5.1.3, respectively.

Object detection. The server can also take in 3D object detection bounding boxes,
which represent the output of a generic object detector or perception pipeline capable of
estimating the 3D locations of detected objects. The bounding box’s size plays a role in the
octree belief update, as it influences the volumetric observation, where voxels overlapping
with the bounding box are labeled by the detected object and leads to an increase in the
octree belief at the corresponding locations.

When 3D object detection is not available on the robot, the system can also consume
label-only detections based on just images. Such label-only detections essentially corre-
spond to a volumetric observation within the FOV where all voxels are labeled by the
object, which usually covers a sizable volume. This is still useful for search, as subsequent
search steps can reduce uncertainty by looking from different viewpoints.
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Server requests. The server may also actively request information (such as additional
observation about the search region’s occupancy), which enables our implementation of
hierarchical planning in Section 5.2.2; there, 3D local search is triggered by a high-level
action to “search locally” and the server would request point cloud data on the fly in order
to instantiate 3D-MOS.

Client

Here, I describe several important aspects of the GenMOS client.

Client’s role. The client sends to the server configurations of the POMDP agent, per-
ception data, and planning requests, and executes the action returned by the server (Fig-
ure 5.3). All data transmitted between the client and the server are represented as Protocol
Buffer (protobuf) messages (Varda, n.d.) of generic, robot-independent message types (e.g.,
point cloud, 3D bounding box, 6D pose, etc.). The client is responsible for integrating with
the robot hardware, obtaining sensor data and converting them into the protobuf message
types, and physically executing the actions to reach the planned viewpoints. This makes
the server code independent of any specific robot.

Planning requsts. When planning requests are sent from the client, the server
performs online planning using an asymptotically optimal, Monte Carlo Tree Search-based
online POMDP planning algorithm called POUCT (Silver & Veness, 2010).1 The server
converts the planned camera viewpoint q′ ∈ R to metric coordinates in the frame of the
search region. The client then handles moving the robot to that viewpoint. If the server
plans a FIND action, the client should send back the detected target objects (if any)2 The
client is also responsible for sending new observations upon action completion.

Next, I follow through with explaining the algorithmic contributions of this chapter
that enable the two additional uses of point cloud in GenMOS: belief initialization and
view position graph sampling.

5.1.2 Prior Initialization of Octree Belief

Octree belief covers, by definition, a cubic volume; However, the actual feasible search
region is likely not cubic, and often irregular. This causes the robot to believe constantly
that the target objects are outside of the actual search region, at places imperceivable by the
robot, which can impact search behavior.3

To address this problem, I propose an efficient algorithm for initializing an octree belief
over an arbitrary search region, presented in Algorithm 4. Recall that G denotes the entire

1. See Section 2.2.4, page 28 for an introduction of POUCT.
2. The client may choose to control the robot to physically signal when FIND is taken. For example, with

Spot, I let the robot close and reopen its gripper, indicating the robot’s commitment to the found location.
3. This is an issued I observed with the proof-of-concept system in Chapter 4.

59



5.1. THE GENMOS SYSTEM

Figure 5.5: Left: A simulation environment where the pose of the robot’s viewpoint is rep-
resented by the red arrow, and the two target objects are represented by orange
and green cubes. Middle: initialized octree belief given uniform prior within a
10.2m2×2.4m region; Right: initialized octree belief within the same region,
given occupancy-based prior constructed from point cloud. Colors indicate
strength of belief, from red (high) to blue (low).

3D grid map at ground resolution level underlying an octree belief. Suppose G∗ ⊆ G is the
subset of grids in G that make up the search region.4 Recall the definition of default value

and initial value in Definition 1 and Definition 2, respectively (Section 4.4, page 45). The
high-level idea of the proposed algorithm is as follows:

1. First, set the default value of all ground-level nodes in the octree belief to 0.

2. Then, through a sample-based procedure (with N samples), ground-level nodes
whose 3D positions lie within the given search region G∗ have their default values
changed to 1.

This effectively reduces the sample space of the octree belief to be within the search region
G∗. Besides reducing the sample space, if we are given a prior distribution PRIORVALi :
Gl

∗ → R, we can initialize the octree belief accordingly as follows, during step 2 above:

3. If a prior probability PRIORVALi(gl) is defined at octree belief node gl ∈ Gl
∗, and gl

is the parent (or self) of some ground level node g ∈ G sampled during step 2, then
VALi1(g

l), the initial value at gl is set as VALi1(g
l)← PRIORVALi(gl).

The algorithm is given below in Algorithm 4. The assignment of initial value at a node is
done in lines 8-10 and the tree can be pruned as in lines 12-14. This proposed algorithm
has a complexity of O(N(log(|G|))2).

4. G∗ could be an arbitrary subset, not necessarily forming, for example, a cuboid.
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Algorithm 4: Initialize Octree Belief (m,G∗, PRIORVALi)→ bi1
input : m: octree dimension (power of 2, such that |G| = m3);

G∗: the actual search region, satisfying G∗ ⊆ G;
PRIORVALi: Prior distribution of octree node values.

param: N : number of samples; B: a 3D box, satisfying G∗ ⊆ B ⊆ G.
output: bi1: the initialized octree belief.

1 Initialize octree Ψ(bi0); Set VALi0(g) = 0 (instead of 1);
2 for i ∈ {1, · · · , N} do

3 Set l = 0; Sample gl ∼ B ; // ground resolution location

4 while l ≤ log2m do

5 if gl ∈ Gl
∗ then

6 Add gl to Ψ(bi1); // insert gl to octree underlying bi
1

7 Set default value VALi0(g
l) = |CH0(gl)|;

8 if gl ∈ PRIORVALi then

9 Set initial value VALi1(g
l)← PRIORVALi(gl);

// otherwise VAL
i

1
(gl)← VAL

i

0
(gl)

10 end

// ensure parent value is sum of children

11 Update values of all parent nodes at gl+1 · · · gm;
12 if VALi1(g

l) = VALi0(g
l) then

13 remove children of gl ; // Pruning

14 end

15 end

16 l ← l + 1;
17 end

18 end

19 NORM1 ← VALi1(g
m) ; // normalizer set to root node’s value

In practice, the server can optionally determine the search region G∗ based on the oc-
cupancy octree constructed from point cloud observations. This avoids believing that the
objects lie in midair. In our experiments, we assign a prior value of 100× ((2k)3) to occu-
pied nodes in the octree at the resolution level k = 2, and we set the number of samples
N = 3000. Figure 5.5 visualizes an octree belief with occupancy-based prior.

5.1.3 Belief-based Sampling for View Position Graph

The evaluation in Sections 4.5.3 and Sections 4.5.4 of the previous chapter only considers
moving the camera in cardinal directions, or over a fixed topological map. To enable plan-
ning over the continuous space of viewpoints R ⊆ P × SO(3), GenMOS samples a view
position graph Gt = (PV , EM) based on the current octree belief. At a high level, given
an occupancy octree, we first sample a set of non-occupied positions PV from P with a
minimum separation threshold, (e.g., 0.75m) and associate with each position the belief by
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querying the octree belief at that position at a higher resolution level to cover more space.
Then, we select top-K (e.g., K = 10) nodes ranked by their beliefs and insert edges such
that each node has a limited degree. A MOVE(sr, pv) action then moves the robot to a
viewpoint position pv ∈ Pv on the graph. We implicitly enforce a LOOK(ϕ) action after a
MOVE action through the transition model where ϕ is the orientation facing the an unfound
object (contained in s, input to the transition model). At time t+ 1, the graph is resampled
if the sum of the probability covered by positions in Gt is below a threshold. (e.g., 0.4).

5.1.4 The gRPC Protocol in GenMOS

In the gRPC framework, remote procedural calls (RPCs) are defined as Protocol Buffer
messages (Varda, n.d.). In particular, the key RPCs in GenMOS are as follows:

• CreateAgent: Upon receiving the POMDP agent configurations from the client, the
server prepares for agent creation pending the first UpdateSearchRegion call.

• UpdateSearchRegion: The client sends over a point cloud of the local search region,
and the server creates or updates the occupancy octree about the search region.

• ProcessObservation: The client requests belief update by sending observations such
as object detection and robot pose estimation.

• CreatePlanner: The client provides hyperparameters of the planner, and the server
creates a planner instance accordingly (e.g., POUCT planner in pomdp_py (Zheng &
Tellex, 2020)).

• PlanAction: The client requests the server to plan an action for an agent. An action is
planned only if the last planned action has been executed successfully.

• ListenServer: This is a bidirection streaming RPC that establishes a channel of com-
munication of messages or status between the client and the server.

5.1.5 Example Configuration Parameters

The table below lists some parameters that the GenMOS server is able to handle.

octree_size Dimension of the octree representing the search region (e.g., 32
means the octree occupies a 323 grid)

res Resolution of a grid, i.e., length of the grid’s side in meters (e.g.,
0.1)

region_size Defines the dimensions of a box (w, ℓ, h) in meters (e.g.(4.0,
3.0, 1.5))

center Defines the XYZ location (metric)of the search region’s center
(e.g.(-0.5, -1.65, 0.25)))

prior_from_occupancy “True” to use occupancy-based prior
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occupancy_fill_height “True” to consider the space below obstacles
into search space

num_nodes maximum number of view positions on graph (e.g., 10)

sep minimum separation between nodes (in meters) (e.g., 0.4)

inflation radius to blow up obstacles for view position sampling

num_sims number of samples for MCTS-based online POMDP planning.

Table 5.1: Example configuration parameters in GenMOS

5.2 Evaluation of GenMOS

We implemented the gRPC protocols of the GenMOS system described in Section 5.1.4.
The result is a single package for multi-object search in 3D regions that can provide the
object search functionality as long as the perception inputs are given, which are generic
point cloud and object detection results that a robot typically should be able to provide.

There are two hypotheses that we test through our evaluation: (1) The octree belief-
based planning algorithm that the package implements is effective for 3D object search; (2)
The package does enable real robots to search for and find objects in 3D regions in different
environments within a reasonable time budget.

To test the first hypothesis, we conduct an experiment in simulation (Section 5.2.1). To
test the second hypothesis, we deploy our system for object search with a Boston Dynamics
Spot robot in two different local regions: a region of arranged tables and a kitchen region
(Section 5.2.2), and we also implement a preliminary hierarchical planning algorithm for a
demonstration over a larger lobby area (Section 5.2.2). We further integrate GenMOS with
Kinova MOVO and Universal Robotics UR5e robotic arm and test search behavior enabled
by GenMOS.

5.2.1 Evaluation in Simulation

We tasked a simulated robot (represented as an arrow for its viewpoint) to search for two
virtual objects (cubes) with volume 0.002m3 each uniformly randomly placed in a region
of size 10.2m2× 2.4m. The robot’s frustum camera model had a FOV angle of 60 degrees,
minimum range of 0.2m and maximum range of 2.0m.

We experimented with three types of priors, groundtruth, uniform, and occupancy-
based prior, at two different resolution levels, 0.001m3 (octree size 32×32×32) and
0.008m3 (octree size 16×16×16) representing search granularity. For the best-performing
setting (non-groundtruth), we also compared the use of the POUCT planner against two
baselines: Random moves to a uniformly sampled view position graph node (Section 5.1.3),
and Greedy is a next-best view planner that moves to the view position graph node that is
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Prior type (resolution) Length Planning Total success
with POUCT (m) time (s) time (s) rate

Uniform (0.008m3) 22.13 24.28 166.18 50%
Occupancy (0.008m3) 23.89 22.66 159.10 60%
Uniform (0.001m3) 6.42 10.47 99.66 90%
Occupancy (0.001m3)∗ 3.22 7.42 64.12 100%
Groundtruth 0.44 1.97 17.82 100%

∗with Random 12.18 0.19 167.20 55%
∗with Greedy 3.48 0.12 81.80 85%

Table 5.2: Simulation results. We compare the search performance between different prior
belief and resolution settings. The results for the first three colums are averaged
over 20 trials.

closest to the highest belief location for some target. Both baseline planners take FIND

upon target detection.

We evaluate the search performance by four metrics: total path length traversed during
search (Length), total time used for POMDP planning (Planning time), total system time
(Total time), and success rate. Total system time included time for planning, executing
navigation actions, receiving observations, belief update and visualization; the simulated
robot has a translational velocity of 1.0m/s, and a rotational velocity of 0.87rad/s.

We perform 20 search trials per method and report the average of each metric in Ta-
ble 5.2.5 Each trial was allowed 180s total system time (excluding the time for visualiza-
tion). Results indicate that the system achieved high success rate especially at high res-
olution under occupancy-based prior. We observed that searching with a resolution level
more coarse than the target size hurts performance, while having occupancy-based prior
improves. Additionally, Greedy was much faster than POUCT in planning time yet lead
to lower success rate within the time budget and longer total time than using POUCT.
Our intuition is that, while Greedy prioritizes looking at a location with the highest belief,
POUCT considers the search of multiple objects in a sequence.

5.2.2 Deployment on the Boston Dynamics Spot

We deploy our system to the Boston Dynamics Spot (Boston Dynamics Spot, 2019) by writ-
ing a client for GenMOS that interfaces with the Spot SDK.6 Spot is a mobile robot that is
robust at navigation while avoiding obstacles. Our Spot robot is equipped with an arm that
has a gripper with an RGB-D camera, which has a depth range of around 1.5m. However,

5. Simulation experiments were run on a computer with i7-8700 CPU.
6. We integrated Spot SDK with ROS (Quigley et al., 2009) to use RViZ (Kam et al., 2015); Our computer

that ran GenMOS for Spot has an i7-9750H CPU with an RTX 2060 GPU.
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motion planning of the arm does not have collision checking. Nevertheless, our package
is able to output viewpoints that are of safe distances from obstacles to enable collision-
free search, leveraging the point cloud received from the Spot’s on-board cameras. We use
Spot’s off-the-shelf GraphNav service to map the search region (without the presence of
the target objects) and then localize the robot within it.

Figure 5.6: Candidate target objects in our evaluation. From left to right, the object labels
are: Columbia Book, Robot Book, Bowl, Lysol, ToyPlane, Pringles, and Cat.

We task the robot to search in 2 different local regions in different rooms of our lab
(Figure 5.7). The first region (of size 9m2 × 1.5m) consists of two tables and a separation
board which creates occlusion; The target objects can be on the floor, or on or under tables;
Note that our system is given only point cloud observations to infer potential target loca-
tions. The second region (of size 7.5m2 × 2.2m) is a kitchen area, where target objects can
be on the countertop, on or underneath the couch, on the shelf, or in the sink. In both en-
vironments, the resolution of the octree belief is set to 0.001m3 with a size of 32×32×32.
The robot is given at most 10 minutes to search. We collected a dataset of 230 images and
trained a YOLOv5 detector (Jocher et al., 2020) with 1.9 million parameters for the objects
of interest (Figure 5.6). We project the 2D bounding box to 3D using the depth image from
the gripper camera.
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Figure 5.7: Local regions in our evaluation with Spot. Upper two: two views of the ar-
ranged tables region. A black board separates the two tables to block the view
from one side to the other. Bottom two: two views of the kitchen region, with
a couch, a countertop, and a shelf.

Figure 5.8 contains illustrations of several key frames during the search trials in both
regions. Video footages of the search together with belief state visualization are available
in the supplementary video. In the arranged tables region, our system enables Spot to si-
multaneously search for four objects (Cat, Pringles, Lysol, and ToyPlane), and successfully
find three objects in 6.5 minutes. In the kitchen region, our system enables Spot to find a
Cat placed underneath the couch within one minute. However, we do observe that search
success deteriorates due to false negatives from the object detector, as well as conserva-
tive viewpoint sampling for obstacle avoidance, which prevents the robot to plan top-down
views from above the countertop, for example. Overall, our system enables the robot to
search for objects in different environments within a moderate time budget.
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Figure 5.8: Key frames from local region search trials. Each frame consists of three im-
ages: a third-person view (top), an image from Spot’s gripper camera with
object detection (bottom left), and a combined visualization of the octree be-
lief, viewpoint graph, and local point cloud observations. Green boxes indicate
successfully finding the marked object. Red boxes indicate failure of finding
the object due to false negatives in object detection. The yellow or white box
on the right of each frame indicates the amount of time passed since the start
of the search. Frames at the top row belong to a single trial in the table re-
gion, while frames at the bottom row belong to distinct trials in the kitchen
region. The top row (1-4) shows that GenMOS enables Spot to successfully
find multiple objects in the table region: Lysol under the white (2), Pringles
on the white table (3), and the Cat on the fllor under the wooden table (4).
The bottom row shows that GenMOS enables Spot to find a Cat underneath
the couch (5), and the Pringles at the countertop corner (6). (7-8) shows a
failure mode, where the GenMOS plans a reasonable viewpoint, while the ob-
ject detector fails to detect the object (Cat) on the shelf or in the sink. Video:
https://youtu.be/TfCe2ZVwypU
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Figure 5.9: Sequence of frames from the search trial where Spot is tasked to find the toy
cat under the couch. GenMOS enables Spot to find the hidden cat under one
minute. Red boxes represent octree belief, initialized based on occupancy.
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Figure 5.10: Demonstration of hierarchical planning where a 2D global search is integrated
with 3D local search through the stay action (Zheng et al., 2022). This system
enables the Spot robot to find a Cat in a lobby area within 3 minutes. (1) Initial
state; (2) searching in a 3D local region; (3) the robot detects the Cat and the
search finishes.

Extension to Hierarchical Planning

We envision the integration of our 3D local search algorithm with a global search algorithm
so that a larger search space can be handled. To this end, we implemented a hierarchical
planning algorithm that contains a 2D global planner (with the same multi-object search
POMDP model as in Chapter 4 but in 2D), where the global planner has a stay action (no
viewpoint change) which triggers the initialization of a 3D local search agent. In particular,
our implementation uses the ListenServer streaming RPC; when the planner decides to
search locally, we let the server send a message that triggers the client to send over an
UpdateSearchRegion request to initialize the local 3D search agent.

The starting belief of the 3D local agent is initialized based on the 2D global belief; the
2D global belief is in turn updated by projecting the 3D field of view down to 2D. We set
the resolution of 2D search to be 0.09m2, and the resolution of 3D search to be 0.001m3.
We test this system in a lobby area of size 25m2×1.5m, where the robot is tasked to find the
toy cat on a tall chair (Figure 5.10). The search succeeded within three minutes, covering
roughly 15m2.
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Figure 5.11: Test environment for object search with MOVO using GenMOS. The target
object is, again, the toy cat. In this case, it is lying on the floor next to the
opened door.

5.2.3 Deployment on the Kinova MOVO Robot

We additionally deployed GenMOS to the Kinova MOVO mobile manipulator, a robot with
a mobile base, an extensible torso, and a head that can pan and tilt, and it is equipped with
a Kinect V2 RGBD camera. Similar to Spot, we deployed GenMOS to MOVO by integrat-
ing the GenMOS gRPC client with the perception, navigation and control stacks of MOVO,
which is based on ROS Kinetic. Since the maintenance of MOVO by Kinova has termi-
nated since 2019, deploying GenMOS on MOVO poses a greater challenge compared to
Spot. Nevertheless, through Docker (Merkel, 2014), GenMOS was successfully integrated
through implementing a client for MOVO, and it enabled MOVO to do object search.

We evaluated the resulting object search system in a small living room environment
(Figures 5.12 and 5.13). The robot is able to perform search and successfully finds a toy
cat on the floor in around 2 minutes. Compared to Spot, however, MOVO is less agile and
prone to collision with obstacles while navigating between viewpoints during the search.
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Figure 5.12: Here, the toy cat lies on the floor next to the opened door. MOVO eventually
looked in the right direction, but the object detector failed to recognize it.

Figure 5.13: Here, the toy cat is in front of the room divider. Although the detector failed
at first (2), MOVO recovered and found the target on the second try (4).
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Figure 5.14: Test environment for UR5e. The robot’s gripper had a camera. The target
object is a cup placed either on or slightly under the farther table, initially out
of sight for the gripper camera.

5.2.4 Deployment on the Universal Robotics UR5e Robotic Arm

Finally, we integrate GenMOS with the UR5e robotic arm on yet a different middleware,
Viam.7 The UR5e arm is mounted on a table and it is equipped with a camera on its gripper.
We applied an off-the-shelf RGB object detection model trained on MS-COCO (T.-Y. Lin
et al., 2014) and tasked the arm to find a red cup. The cup is initially out of sight, either
on or below a different table. Since object detection lacks depth, we considered label-only
detection (i.e., discarding the 2D bounding box and only keeping the event that a certain
object is detected). As discussed in Section 5.1.1 (page 58), GenMOS can accommodate to
such a scenario as it is expected to look from different viewpoints to reduce the region of
uncertainty, once a detection is made. Indeed, we observed this type of behavior on UR5e
(see Figure 5.15).

A few caveats should be noted about this particular system. I expected the arm to
be able to reliably motion plan to viewpoints produced by GenMOS. However, in prac-
tice, motion planning frequently fails.8 As a work-around that still tests GenMOS’s object
search planning ability, I predefined a set of viewpoints for which motion planning works,
and when a viewpoint is planned by GenMOS, the arm is moved to the closest viewpoint in
this set. Another issue that I worked around is that the detector works poorly if the image
is rotated due to gripper rotation. So, I made the gripper automatically level every time it
reaches a destination view pose, which was done by commanding the last joint to offset the
end effector’s rotation around the wrist.

7. As an alternative to ROS, Viam (https://www.viam.com/) aims to provide fast configuration of robot
hardware and distributed robot systems through an extensive web interface that accelerates collaboration
as well as standardized services for vision and motion planning as building blocks.

8. This is in part due to the fact that motion services with Viam were in early phases of development when
I visited, but also that GenMOS does not internally consider kinematic constraints; it works if motion
planning fails a few times as GenMOS would simply replan, but the failure was too frequent at the time
to keep trying motion planning to any viewpoint produced by GenMOS .
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Figure 5.15: The UR5e arm moves back and forth, reducing uncertainty to a few grids.

Figure 5.16: The UR5e arm looks down; yet belief update missed the detection.
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CHAPTER 6

Correlational Object Search

6.1 Motivation - Finding Hard-to-Detect Objects

OBJECT search can make a difference in many applications including domestic services
(Sprute et al., 2017; Zeng et al., 2020), search and rescue (Eismann et al., 2009; Sun

et al., 2016), and elderly care (Idrees et al., 2020; Loghmani et al., 2018). In realistic
settings, however, the object being searched for will often be small, outside the current
field of view, and hard to detect. For example, a household robot must be very close to
a fork in order to be able to detect it; likewise, a warehouse robot may have to locate a
particular machine within a very large factory. To be effective, the robot must generate
efficient search strategies that require as few timesteps as possible.

6.1.1 Why Correlations?

In such settings, when the target object is hard to detect, correlational information can be
extremely useful. Specifically, suppose the robot is equipped with a prior about the relative
spatial locations of object types (e.g., refrigerators tend to be near forks). Then, it can lever-
age this information as a powerful heuristic to narrow down or “focus” the search space,
by first focusing its efforts on locating easier-to-detect objects that are highly correlated
with the target object, and only then focusing on locating the target object itself. Doing
so has the potential to greatly improve search efficiency, as the robot no longer needs to
waste time considering strategies that, e.g., search for a fork in a bathroom. Unfortunately,
previous approaches to object search with correlational information tend to resort to ad-hoc
or greedy search strategies (Aydemir et al., 2013; Kollar & Roy, 2009; Zeng et al., 2020),
which may not scale well to complex environments.
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Figure 6.1: We study the problem of object search using correlational information about
spatial relations between objects. This example illustrates a desirable search
behavior in an AI2-THOR scene, where the robot leverages the detection of a
StoveBurner to more efficiently find a hard-to-detect PepperShaker.

6.1.2 Remark on Previous Work

We follow a long line of work that models the object search problem as a partially ob-
servable Markov decision process (POMDP) (Aydemir et al., 2013; J. K. Li et al., 2016;
Xiao et al., 2019; Wandzel et al., 2019; Zheng et al., 2021a). This formalization is use-
ful because object search over long horizons is naturally a sequential, partially observed
decision-making problem: (1) the robot must search for the target object by visiting multi-
ple viewpoints in the environment sequentially, and (2) the robot must maintain and update
a measure of uncertainty over the location of the target object, via its belief state.

Garvey (1976) and Wixson & Ballard (1994) pioneered the paradigm of indirect search,
where an intermediate object (such as a desk) that is typically easier to detect is located first,
before the target object (such as a keyboard). More recently, probabilistic graphical models
have been used to model object-room or object-object spatial correlations (Aydemir et al.,
2013; Zeng et al., 2020; Kollar & Roy, 2009; Lorbach et al., 2014). In particular, Zeng et al.
(2020) proposed a factor graph representation for different types of object spatial relations.
Their approach produces search strategies in a greedy fashion by selecting the next-best
view to navigate towards, based on a hybrid utility of navigation cost and the likelihood of
detecting objects. In our evaluation, we compare our sequential decision-making approach
with a greedy, next-best view baseline based on that work (Zeng et al., 2020).

Recently, the problem of semantic visual navigation (Y. Zhu et al., 2017; Batra et al.,
2020; Wortsman et al., 2019; Qiu et al., 2020; Mayo et al., 2021) received a surge of in-
terest in the deep learning community. In this problem, an embodied agent is placed in
an unknown environment and tasked to navigate towards a given semantic target (such as
“kitchen” or “chair”). The agent typically has access to behavioral datasets for training
on the order of millions of frames and the challenge is typically in generalization. Our
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work considers the standard evaluation metric (SPL (Anderson et al., 2018)) and task suc-
cess criteria (object visibility and distance threshold (Batra et al., 2020)) from this body of
work. However, our setting differs fundamentally in that the search strategy is not a result
of training but a result of solving an optimization problem.

6.2 Contributions

In this work, we make the following contributions:

• We propose COS-POMDP, which contains a correlation-based observation model
that captures spatial relations between objects

• We prove that COS-POMDPs produce equivalent solutions to a naive formulation
where the state space is a joint over all object locations, despite COS-POMDPs hav-
ing a much smaller state space;

• We address scalability by proposing a hierarchical planning algorithm, where a high-
level COS-POMDP plans subgoals, each fulfilled by a low-level planner that plans
with low-level actions (i.e., given primitive actions); both levels plan online based on
a shared and updated COS-POMDP belief state, enabling closed-loop planning;

• We investigate the influence of correlational information when searching for hard-to-
detect targets, and the benefit of optimizing for a sequence of actions as opposed to
selecting the next-best view.

• We conduct experiments in AI2-THOR (Kolve et al., 2017), a realistic simulator of
household environments, and use YOLOv5 (Redmon et al., 2016; Jocher et al., 2020)
as the object detector.

◦ Our results show that, when the given correlational information is accurate,
COS-POMDP leads to more robust search perfomance when the target object
is hard to detect. In particular, for target objects with a true positive detection
rate below 40%, COS-POMDP improves the POMDP baseline that ignores cor-
relational information by 70% and a greedy, next-best view baseline by 170%,
in terms of the SPL (Anderson et al., 2018) metric, commonly used for evalu-
ating navigation agents in simulated environments (Wortsman et al., 2019; Qiu
et al., 2020; Batra et al., 2020).

6.3 Problem Formulation

We formulate correlational object search as a planning problem, where a robot must search
for a target object given correlational information with other objects in the environment.
We begin by describing the underlying search environment and the capabilities of the robot.
Then we define the inputs to the robot and the solution expected to be produced by the robot
to solve this problem.
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6.3.1 Search Environment and Robot Capabilities

The search environment contains a target object and n additional static objects. The set
of possible object locations is discrete, denoted as X . The locations of the target object
xtarget ∈ X and other objects x1, . . . , xn ∈ X are unknown to the robot, and follow a latent
joint distribution Pr(x1, . . . , xn, xtarget). The robot is given as input a factored form of this
distribution, defined later in Sec. 6.3.2.

The robot can observe the environment from a discrete set of viewpoints, where each
viewpoint is specified by the position and orientation of the robot’s camera. These view-
points form the necessary state space of the robot, denoted as Srobot. The initial viewpoint
is denoted as sinit

robot. By taking a primitive move action a from the setAm, the robot changes
its viewpoint subject to transition uncertainty Tm(s′robot, srobot, a) = Pr(s′robot|srobot, a). Also,
the robot can decide to finish a task at any timestep by choosing a special action Done,
which deterministically terminates the process.

At each timestep, the robot receives an observation z factored into two independent
components z = (zrobot, zobjects). The first component zrobot ∈ Srobot is an estimation
of the robot’s current viewpoint following the observation model Orobot(zrobot, srobot) =
Pr(zrobot|srobot). The second component zobjects = (z1, . . . , zn, ztarget) is the result of per-
forming object detection. Each element, zi ∈ X ∪ {null}, i ∈ {1, . . . , n, target}, is the
detected location of object i within the field of view, or null if not detected. The obser-
vation zi about object i is subject to limited field of view and sensing uncertainty captured
by a detection model Di(zi, xi, srobot) = Pr(zi|xi, srobot); Here, a common conditional in-
dependence assumption in object search is made (Zeng et al., 2020; Wandzel et al., 2019),
where zi is conditionally independent of the observations and locations of all other objects
given its location and the robot state srobot. The set of detection models for all objects is
D = {D1, . . . , Dn, Dtarget}. In our experiments, we obtain parameters for the detection
models based on the performance of the vision-based object detector (Sec. 6.6.1).

6.3.2 The Correlational Object Search Problem

Although the joint distribution of object locations is latent, the robot is assumed to
have access to a factored form of that distribution, that is, n conditional distributions,
C = {C1, . . . , Cn} where Ci(xi, xtarget) = Pr(xi|xtarget) specifies the spatial correlation
between the target and object i. We call each Ci a correlation model. This model can be
learned from data or specified based on environment-specific knowledge.

The robot performs search by taking a sequence of move actions to observe different
parts of the environment, and terminates the search by taking Done. We are now ready to
define the correlational object search problem:

Problem 1 (Correlational Object Search). Given as input a tuple

(X , C,D, sinit
robot,Srobot, Orobot,Am, Tm),

77



6.4. CORRELATIONAL OBJECT SEARCH AS A POMDP

the robot must perform a sequence of actions, a1:T = (a1, . . . , aT ) of length T ≥ 1, where
a1, . . . , aT−1 ∈ Am and aT is Done. The action sequence a1:T is called a solution. A solu-
tion is successful if the robot state sequence and the target location satisfy certain criteria
upon taking the Done action. In our evaluation in AI2-THOR, we use the success crite-
ria recommended by Batra et al. (2020) and the commonly-used SPL metric proposed by
Anderson et al. (2018) to measure the efficiency of successful searches. The objective is
to produce a successful solution that reaches the target object while minimizing the total
distance traveled by the robot.

6.4 Correlational Object Search as a POMDP

The POMDP is an extensively studied framework for optimizing sequential decisions un-
der partial observability and uncertainty in motion and sensing. Both challenges (partial
observability and uncertainty) considered in POMDP arise naturally in object search. In
addition, the objective of minimizing the navigation distance while successfully finding the
target can be represented by the POMDP objective of maximizing the discounted cumula-
tive rewards. Therefore, we model the correlational object search task as a POMDP.

We first provide a condensed review of POMDPs; for more information, we refer the
reader to (Kaelbling et al., 1998; Shani et al., 2013; Somani et al., 2013; Silver & Veness,
2010). Then, we present the COS-POMDP, a POMDP formulation that addresses the cor-
relational object search problem, followed by a discussion on its optimality. COS-POMDP
expands the observation space of the overarching object search POMDP (Chapter 3) by
considering observations about objects other than the target object, and formulates the cor-
responding observation model using spatial correlation.

6.4.1 COS-POMDP

Given an instance of the correlational object search problem defined in Sec. 6.3.2, we define
the Correlational Object Search POMDP (COS-POMDP) as follows:

• State space. The state space S is factored to include the robot state srobot ∈ Srobot

and the target state xtarget ∈ X . A state s ∈ S can be written as s = (srobot, xtarget).
Importantly, no other object state is included in S .

• Action space. The action space is A = Am ∪ {Done}.

• Observation space. The observation space Z is factored over the objects, and each
z ∈ Z is written as z = (zrobot, zobjects), where zobjects = (z1, . . . , zn, ztarget).

• Transition model. The objects are assumed to be static. Actions am ∈ Am change
the robot state from srobot to s′robot according to Tm, and taking the Done action termi-
nates the task deterministically.
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• Observation model. By definition of z, we have

Pr(z|s) = Pr(zrobot|srobot) Pr(zobjects|s) (6.1)

= Orobot(zrobot, srobot) Pr(zobjects|s) (6.2)

Under the conditional independence assumption in Sec. 6.3, Pr(zobjects|s) can be com-
pactly factored as:

Pr(zobjects|s) = Pr(z1, . . . , zn, ztarget|xtarget, srobot) (6.3)

= Pr(ztarget|xtarget, srobot)
n
∏

i=1

Pr(zi|xtarget, srobot) (6.4)

The first term in Eq (6.4) is defined by Dtarget, and each Pr(zi|xtarget, srobot) is called a
correlational observation model, written as:

Pr(zi|xtarget, srobot) =
∑

xi∈X

Pr(xi, zi|xtarget, srobot) (6.5)

=
∑

xi∈X

Pr(zi|xi, srobot) Pr(xi|xtarget) (6.6)

where the two terms in Eq (6.6) are the detection model Di ∈ D and correlation
model Ci ∈ C, respectively.

• Reward function. The reward function, R(s, a) = R(srobot, xtarget, a), is defined as
follows. Upon taking Done, the task outcome is determined based on srobot, xtarget,
which is successful if the robot orientation is facing the target and its position is
within a distance threshold to the target. If successful, then the robot receivesRmax ≫
0, and Rmin ≪ 0 otherwise. Taking a move action from Am receives a negative
reward which corresponds to the action’s cost. In our experiments, we setRmax = 100
and Rmin = −100. Each primitive move action (e.g., MoveAhead) receives a step cost
of -1.

6.4.2 Optimality of COS-POMDPs

The state space of a COS-POMDP involves only the robot and target object states. A
natural question arises: have we lost any necessary information? In this section, we show
that COS-POMDPs are optimal, in the following sense. If we imagine solving a “full”
POMDP corresponding to the COS-POMDP, whose state space contains all object states,
then the solutions to the COS-POMDP are equivalent. Note that a belief state in this “full”
POMDP scales exponentially in the number of objects.

We begin by precisely defining the “full” POMDP, henceforth called the F-POMDP,
corresponding to a COS-POMDP. The F-POMDP has identical action space, observation
space, and transition model as the COS-POMDP. The reward function is also identical
since it only depends on the target object state, robot state, and the action taken. F-POMDP
differs in the state space and observation model:
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• State space: The state is s = (srobot, xtarget, x1, . . . , xn).

• Observation model: Under the conditional independence assumption stated in
Sec. 6.3, the model for observation zi of object xi involves just the detection model:
Pr(zi|s) = Pr(zi|xi, srobot).

Since the COS-POMDP and the F-POMDP share the same action and observation
spaces, they have the same history space as well. We first show that given the same policy,
the two models have the same distribution over histories.

Theorem 1. Given any policy π : ht → a, the distribution of histories is identical
between the COS-POMDP and the F-POMDP.

Proof. See Appendix 6.8.1 (page 91).

Using Theorem 1, we are equipped to make a statement about the value of following a
given policy in either the COS-POMDP or the F-POMDP.

Corollary 1. Given any policy π : ht → a and ht, the value Vπ(ht) is identical between
the COS-POMDP and the F-POMDP.

Proof. By definition, the value of a POMDP at a history is the expected discounted cumu-
lative reward with respect to the distribution of future action-observation pairs. Theorem 1
states that the COS-POMDP and F-POMDP have the same distribution of histories given
π. Furthermore, the reward function depends only on the states of the robot and the target
object. Thus, this expectation is equal for the two POMDPs at any h.

Finally, we can show that COS-POMDPs are optimal in the sense as discussed before.

Corollary 2. An optimal policy π∗ for either the COS-POMDP or the F-POMDP is
also optimal for the other.

Proof. Suppose, without loss of generality, that π∗ is optimal for the COS-POMDP but
not the F-POMDP. Let π′ be the optimal policy for the F-POMDP. By the definition of
optimality, for at least some history h we must have Vπ′(h) > Vπ∗(h). By Corollary 1, for
any such h the COS-POMDP also has value Vπ′(h), meaning π∗ is not actually optimal for
the COS-POMDP; this is a contradiction.

6.5 Hierarchical Planning

Despite the optimality-preserving reduction of state space in a COS-POMDP, directly plan-
ning over the primitive move actions is not scalable to practical domains even for state-of-
the-art online POMDP solvers (Silver & Veness, 2010). This is especially the case when
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Figure 6.2: Illustration of the Hierarchical Planning Algorithm. A high-level COS-
POMDP plans subgoals that are fed to a low-level planner to produce low-
level actions. The belief state is shared across the levels. Both levels plan with
updated beliefs at every timestep.

in-place rotation actions are considered, since identical viewpoints may be repeatedly vis-
ited at different depth levels in the search tree, limiting the size of the search region con-
sidered during planning. At the same time, however, planning POMDP actions at the low
level has the benefit of controlling fine-grained movements, allowing goal-directed behav-
ior to emerge automatically at this level. Therefore, we seek an algorithm that can reason
about both searching over a large region as well as careful search in the area around the
robot. This is practical because typical mobile robots can be controlled both at the low
level of motor velocities and the high level of navigation goals (Zheng, 2021; Macenski et
al., 2020).

Hence, we propose a hierarchical planning algorithm to apply COS-POMDPs in realis-
tic domains. The algorithm is presented in Algorithm 5 and illustrated in Fig 7.2. To enable
the planning of searching over a large region, we first generate a topological graph, where
nodes are places accessible by the robot, and edges indicate navigability between places
(Zheng & Pronobis, 2019). This is done by the SampleTopoGraph procedure (Appendix
6.8.2). In this procedure, the nodes are sampled based on the robot’s current belief in the
target location bttarget, and edges are added such that the graph is connected and every node
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Algorithm 5: OnlineHierarchicalPlanning

Input: P = (X , C,D, sinit
robot,Srobot, Orobot,Am, Tm).

Parameter: maximum number of steps Tmax.
Output: A solution a1:T (Problem 1).
b1target(xtarget)← Uniform(X );
b1robot(srobot)← 1(srobot = sinit

robot);
b1 ← (b1target, b

1
robot);

t← 1;
while t ≤ Tmax and at−1 ̸= Done do

(V , E)← SampleTopoGraph(X ,Srobot, b
t
target);

PH ← HighLevelCOSPOMDP(P,V , E , bt);
subgoal← plan POMDP online for PH;
if subgoal is navigate to a node in V then

srobot ← argmaxsrobot
brobot(srobot);

at ← A∗(subgoal, srobot, Am, Tm);
else if subgoal is search locally then

PL ← LowLevelCOSPOMDP(P , bt);
at ← plan POMDP online for PL;

else if subgoal is Done then
at ← Done

end

zt ← execute at and receive observation;
bt+1 ← BeliefUpdate(bt, at, zt);
t← t+ 1;

end

has an out-degree within a given range, which affects the branching factor for planning. An
example output is illustrated in Fig 7.2.

Then, a high-level COS-POMDP PH is instantiated. The state and observation spaces,
the observation model, and the reward model, are as defined in Sec 6.4.1. The move action
set and the corresponding transition model are defined according to the generated topolog-
ical graph. Each move action represents a subgoal of navigating to another place, or the
subgoal of searching locally at the current place. Both types of subgoals can still be un-
derstood as viewpoint-changing actions, except the latter keeps the viewpoint at the same
location. For the transition model T (s′, g, s) where g represents the subgoal, the resulting
viewpoint (i.e., s′robot ∈ s′) after completing a subgoal is located at the destination of the
subgoal with orientation facing the target object location (xtarget ∈ s). The Done action is
also included as a dummy subgoal to match the definition of the COS-POMDP action space
(Sec 6.4.1).

At each timestep, a subgoal is planned using an online POMDP planner, and a low-level
planner is instantiated corresponding to the subgoal. This low-level planner then plans to
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output an action at from the action set A = Am ∪ {Done}, which is used for execution.
In our implementation, for navigation subgoals, an A∗ planner is used, and for searching

locally, a low-level COS-POMDP PL is instantiated with the primitive movements Am in
its action space. (We use PO-UCT (Silver & Veness, 2010) as the online POMDP solver in
our experiments.)

Upon executing the low-level action at, the robot receives an observation zt ∈ Z from
its on-board perception modules for robot state estimation and object detection. This ob-
servation is used to update the belief of the high-level COS-POMDP, which is shared with
the low-level COS-POMDP.

Finally, the process starts over from the first step of sampling a topological graph. If the
high-level COS-POMDP plans a new subgoal different the current one, then the low-level
planner is re-instantiated.

This algorithm plans actions for execution in an online, closed-loop fashion, allowing
reasoning about viewpoint changes both at the level of places in a topological graph as well
as fine-grained movements.

6.6 Evaluation

6.6.1 Experimental Setup

We test the following hypotheses through our experiments: (1) Leveraging correlational
information with easier-to-detect objects can benefit the search for hard-to-detect objects;
(2) Optimizing over an action sequence improves performance compared to greedily choos-
ing the next-best view.

AI2-THOR

We conduct experiments in AI2-THOR (Kolve et al., 2017), a realistic simulator of in-
household rooms. It has a total of 120 scenes divided evenly into four room types: Bath-

room, Bedroom, Kitchen, and Living room. For each room type, we use the first 20 scenes
for training a vision-based object detector and learning object correlation models (used in
some experiments), and the last 10 for evaluating performance.

The robot can take primitive move actions from the set:

{MoveAhead, RotateLeft, RotateRight, LookUp, LookDown}.

MoveAhead moves the robot forward by 0.25m. RotateLeft, RotateRight rotate the robot
in place by 45◦. LookUp, LookDown tilt the camera up or down by 30◦. The transition
function of the robot’s viewpoint when taking primitive move actions is deterministic. All
methods (Sec 6.6.1) receive observations of the robot’s viewpoint without noise, that is
Orobot(zrobot, srobot) = 1(zrobot = srobot). To be successful, when the robot takes Done, the
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robot must be within a Euclidean distance of 1.0m from the target object while the target
object is visible in the camera frame. The maximum number of steps Tmax is 100.

Object Detector

Unlike previous work in object search evaluated using a ground truth object detector (Qiu
et al., 2020) or detectors with synthetic noise and detection ranges (Zeng et al., 2020), we
use a vision-based object detector, YOLOv5 (Jocher et al., 2020), since it is more realistic
and suitable for our motivation. We collect training data by randomly placing the agent in
the training scenes. Table 6.2 and Table 6.3 contain detection statistics of the target objects
and correlated objects in validation scenes, respectively. The pixel coordinates within the
bounding boxes returned by YOLOv5 are downsampled and inverse projected to positions
in the 3D world frame, using the provided depth image.

Detection Model. Vision detectors can sometimes detect small objects from far away.
Therefore, we consider a line-of-sight detection model with a limited field of view angle to
enable POMDP planning:

D(zi, xi, srobot) = Pr(zi|xi, srobot)

=































1.0− TP si ∈ V(srobot) ∧ zi = null

δFP/|VE(r)| si ∈ V(srobot) ∧ ∥zi − xi∥ > 3σ

δN (zi; xi, σ
2) si ∈ V(srobot) ∧ ∥zi − xi∥ ≤ 3σ

1.0− FP si ̸∈ V(srobot) ∧ zi = null

δFP/|VE(r)| si ̸∈ V(srobot) ∧ zi ̸= null

This detection model is parameterized by: TP, the true positive rate; FP, the false positive
rate; r, the average distance between the robot and the object for true positive detections;
σ, the width of a small region around the true object location where a detection made
within that region, though not exactly accurate, is still accepted as a true positive detection.
We set σ = 0.5m. The notation N (·; xi, σ

2) denotes a Gaussian distribution with mean
xi and covariance σ2

I. The V(srobot) denotes the line-of-sight field of view with a 90◦

angle. The VE(r) denotes the region inside the field of view that is within distance r
from the robot. The weight δ = 1 if the detection is within VE(r), and otherwise δ =
exp(−∥zi − srobot∥ − r)

2.

Target Objects

The list of target object classes and other correlated classes for each room type is listed
below (with no particular order). For detection statistics, please refer to Table 6.1 and
Table 6.3 (Appendix 6.8.3).

• Bathroom - Targets: Fauct, Candle, ScrubBrush; Correlated objects:
ToiletPaperHanger, Towel, Mirror, Toilet, SoapBar.
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• Bedroom - Targets: AlarmClock, Pillow, CD; Correlated objects: Laptop, DeskLamp,
Mirror, LightSwitch, Bed.

• Kitchen - Targets are Bowl, Knife, PepperShaker; Correlated classes are: Lettuce,
LightSwitch, Microwave, Plate, StoveKnob

• Living room - Targets are CreditCard, RemoteControl, Television; Correlated
classes are: LightSwitch, Pillow, HousePlant, Laptop, FloorLamp, Painting.

Correlation Model

We consider a binary correlation model that takes into account whether the correlated object
and the target are close or far. Specifically, we define:

C(xtarget, xi) = Pr(xi|xtarget) (6.7)

=



















1 Close(i, target) ∧ ∥xi − xtarget∥ < d(i, target)

0 Close(i, target) ∧ ∥xi − xtarget∥ ≥ d(i, target)

1 Far(i, target) ∧ ∥xi − xtarget∥ > d(i, target)

0 Far(i, target) ∧ ∥xi − xtarget∥ ≤ d(i, target)

(6.8)

where Close(·, ·) and Far(·, ·) are class-level predicates, ∥·∥ denotes the Euclidean distance,
and d(·, ·) is the expected distance between the two objects. This model is applicable
between arbitrary object classes and can be estimated based on instances of object classes.
In Sec. 6.6.2, we conduct an ablation study where d(·,target) is estimated under different
scenarios: accurate: based on object ground truth locations in the deployed scene; learned

(lrn): based on instances in training scenes; wrong (wrg): same as accurate except we flip
the close/far relationship between the objects so that they do not match the scene.

Implementation Detail of COS-POMDP

Objects exist in 3D space in AI2-THOR scenes, and the robot can rotate its camera both
horizontally and vertically. Our implementation of COS-POMDP allows for search in such
a setting by estimating, in the belief over target locations, both the 2D position of the target
as well as the height of the target. Since the robot can tilt only its camera within a small
range of angles, we consider a discrete set of possible height values, Above, Below, and
Same, which indicates the object is above, below, or at the same level with respect to the
camera’s current tilt angle. Our implementation is based on the pomdp_py (Zheng & Tellex,
2020) library.

Evaluation Metric

We use three metrics: (1) success weighted by inverse path length (SPL) (Anderson et al.,
2018); (2) success rate (SR) and (3) dicounted cumulative rewards (DR). The SPL of each
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Figure 6.3: Example Sequence. Top: first-person view with object detection bounding
boxes. Bottom: Visualization of belief state corresponding to each view. See
Fig 7.2 for the legend of the belief state visualization. Our method (COS-
POMDP) successfully finds a CreditCard in a living room scene, leveraging
the detection of other objects such as FloorLamp and Laptop. For more exam-
ples, please refer to the video at https://youtu.be/wd1tmD0mckY.

search trial is defined as SPL = S · ℓ/max(p, ℓ) where S is the binary success outcome of
the search, ℓ is the shortest path between the robot and the target, and p is the actual search
path. The SPL measures the search performance by taking into account both the success
and efficiency of the search. It is a difficult metric because ℓ uses information about the
true object location. However, it does not penalize excessive rotations (Batra et al., 2020).
Therefore, we also include discounted cumulative rewards (γ = 0.95) which takes such
actions into account.

Baselines

Baselines are defined in the caption of Table 6.1. Note that for Greedy-NBV, based on
(Zeng et al., 2020), a weighted particle belief is used to maintain the belief over the joint
state over all object locations. During planning, the agent selects the next best viewpoint
to navigate towards based on a cost function that considers both navigation distance and
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Figure 6.4: Visualization of robot trajectory produced by different methods for the example
shown in Fig. 6.3. Each gray circle represents the position of a viewpoint, and
each black line segment indicates the orientation of the robot’s camera at a
viewpoint. The path traversed during the search is shown in blue.

the probability of detecting any object. This provides a baseline that is in contrast to the
sequential decision-making paradigm considered by COS-POMDPs and the modeling of
only robot and target states. 1

6.6.2 Results and Discussions

Our main results are shown in Table 6.1. The performance of COS-POMDP is the most
consistent compared to other baselines, with COS-POMDP performing either the best or
the second best in the four room types. The performance is broken down by target classes
in Table 6.2. Greedy-NBV performs well in Bedroom; it appears to experience less in-
accuracy in the particle-based belief over all objects as a result of particle reinvigoration
in bedroom compared to the other room types. COS-POMDP appears to be the most
robust when the target object has significant noise of being correctly detected, including
ScrubBrush, CreditCard, Candle RemoteControl, Knife, and CD. An example search
trial of COS-POMDP for CreditCard is shown in Fig 6.3 and the search paths of the
methods under comparison are visualized in Fig 6.4. For target objects with a true posi-
tive detection rate below 40%, COS-POMDP improves the POMDP baseline that ignores
correlational information by 70% in terms of the SPL metric, and is more than 1.7 times
better than the greedy baseline. Indeed, when the target object is reliably detectable, such
as Television, the ability to detect multiple other objects may actually hurt performance,
compared to Target-POMDP, due to the noise from detecting those other objects and the

1. I attempted a comparison with deep reinforcement learning methods (Wortsman et al., 2019; Qiu et al.,
2020), yet I was blocked by the fact that their codebases were developed for earlier versions of AI2-THOR
(v1.0) and use different configurations (e.g. rotating at 90 degrees instead of 45 degrees). The trained
models performed poorly on the newer version I was using (v3.3.4) due to backwards incompatibility.
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influence on search behavior. These results demonstrate that COS-POMDPs can be applied
to search for hard-to-detect objects leveraging the more reliable detection of correlated ob-
jects.

Ablation Studies

We also conduct two ablation studies. First, we equip COS-POMDP with a groundtruth
object detector, as done in (Qiu et al., 2020), henceforth called COS-POMDP (gt). This
shows the performance when the detections of both the target and correlated objects involve
no noise at all. We observe better or competitive performance from using groundtruth
detectors across all metrics in all room types.

Additionally, we use correlations obtained by learning from data (COS-POMDP (lrn))
as well as incorrect correlation information that is the reverse of the correct one (COS-

POMDP (wrg)). Indeed, using accurate correlations provides the most benefit, while cor-
relations learned through this simple method could offer benefit compared to using incor-
rect correlations in some cases (Bathroom and Bedroom), but can also backfire and hurt
performance in other others. Therefore, properly learning correlation is important, while
leveraging a reliable source of information, for example, from a human at the scene, may
offer the most benefit.

6.7 Summary

In this chapter, we formulated the problem of correlational object search and proposed
COS-POMDP, a POMDP-based approach to model this problem. Our quantitative evalua-
tion, conducted in AI2-THOR (Kolve et al., 2017) using the YOLOv5 (Redmon et al., 2016;
Jocher et al., 2020) detector, demonstrates the benefit of our approach in exploiting the cor-
relational information with easier-to-detect objects to find hard-to-detect objects. Future
work directions include studying the search behavior given different kinds of learned cor-
relation models as well as in more complex settings that involve e.g., container opening and
dynamic objects.
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Bathroom Bedroom Kitchen Living room
Method SPL (%) DR SR (%) SPL (%) DR SR (%) SPL (%) DR SR (%) SPL (%) DR SR (%)
Random 0.00 (0.00) -82.75 (3.43) 0.00 0.00 (0.00) -85.27 (3.82) 0.00 6.90 (9.81) -68.51 (15.61) 6.90 0.00 (0.00) -82.37 (3.62) 0.00
Greedy-NBV 14.85 (9.40) -18.86 (12.14) 35.71 31.10 (17.86) -6.97 (14.20) 40.91 12.03 (9.01) -17.16 (12.85) 32.14 7.13 (7.11) -21.41 (8.21) 20.00
Target-POMDP 24.17 (12.03) -2.60 (17.02) 66.67 14.70 (12.86) -26.74 (13.27) 31.58 14.82 (9.22) -20.06 (13.85) 37.04 29.23 (15.34) -30.65 (13.60) 48.00
COS-POMDP 30.03 (13.59) -14.92 (12.76) 56.00 28.54 (17.63) -16.02 (14.03) 40.00 20.95 (13.10) -4.67 (14.71) 44.00 27.76 (15.21) -12.32 (15.71) 48.15

COS-POMDP (gt) 33.38 (13.92) -11.69 (13.24) 62.96 39.22 (19.56) -13.50 (17.28) 56.25 36.92 (14.33) -2.92 (16.46) 64.00 35.71 (16.05) -9.31 (13.09) 62.50

COS-POMDP (lrn) 19.77 (12.07) -21.53 (13.13) 45.83 16.43 (14.53) -33.73 (11.05) 23.81 6.29 (6.93) -32.72 (13.62) 17.86 14.76 (11.41) -43.09 (13.57) 25.00
COS-POMDP (wrg) 10.83 (7.79) -19.00 (10.21) 28.00 14.54 (14.29) -32.54 (14.87) 27.78 8.80 (7.38) -20.49 (10.63) 25.93 29.34 (16.10) -16.15 (11.96) 54.17

Table 6.1: Main and Ablation Study Results. Unless otherwise specified, all methods use the YOLOv5 (Jocher et al., 2020)
vision detector and are given accurate correlational information. Target-POMDP uses the hierarchical planning except
only the target object is detectable. Greedy-NBV is a next-best view approach based on (Zeng et al., 2020). Random

chooses actions uniformly at random. The highest value of each metric per room type is bolded. Parentheses contain
95% confidence interval. Ablation study results are bolded if it outperforms the best result from the main evaluation.
Metrics are success weighted by inverse path length (SPL) (Anderson et al., 2018), discounted cumulative reward (DR),
and success rate (SR). COS-POMDP is more consistent, performing either the best or the second best across all room
types and metrics.
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Greedy-NBV Target-POMDP COS-POMDP

Room Type Target Class TP FP r (m) SPL (%) DR SR (%) SPL (%) DR SR (%) SPL (%) DR SR (%)

Bathroom
Faucet 56.1 8.0 2.16 31.45 (20.79) 6.11 (21.02) 77.78 40.21 (27.65) 13.97 (30.40) 75.00 24.59 (29.84) -28.23 (26.54) 50.00

Candle 29.4 2.4 1.81 12.52 (20.12) -22.81 (20.80) 22.22 18.63 (14.51) -6.61 (33.50) 75.00 33.89 (21.83) -2.94 (19.08) 66.67

ScrubBrush 64.3 9.9 1.71 2.00 (4.52) -37.79 (17.36) 10.00 7.38 (13.80) -22.68 (34.63) 40.00 31.12 (32.00) -15.08 (28.68) 50.00

Bedroom
AlarmClock 79.6 7.4 2.77 48.10 (43.23) -0.80 (26.52) 57.14 14.64 (46.61) -17.37 (44.62) 25.00 35.07 (33.97) -15.52 (23.95) 44.44

Pillow 88.3 5.2 2.43 30.04 (49.28) -13.59 (38.13) 33.33 5.16 (14.32) -29.49 (30.07) 40.00 21.02 (90.44) -14.85 (98.69) 33.33

CD 48.6 4.5 1.70 18.59 (21.89) -7.36 (26.46) 33.33 19.49 (22.66) -29.12 (21.97) 30.00 24.01 (28.21) -17.03 (24.75) 37.50

Kitchen
Bowl 60.6 11.5 1.75 19.88 (26.57) -15.76 (32.76) 33.33 16.33 (16.00) -10.06 (27.39) 55.56 16.27 (20.22) -0.19 (37.01) 42.86

Knife 37.7 8.7 1.68 8.22 (12.85) -17.74 (26.85) 33.33 5.13 (11.84) -37.99 (17.17) 11.11 23.97 (25.58) -2.59 (25.33) 50.00

PepperShaker 38.1 9.4 1.43 8.39 (10.53) -17.90 (17.39) 30.00 22.99 (23.22) -12.14 (31.40) 44.44 21.26 (30.90) -11.17 (30.04) 37.50

Living room
Television 85.3 5.2 2.59 8.98 (18.36) -22.86 (13.31) 20.00 59.56 (25.42) -6.50 (19.73) 88.89 44.53 (34.78) -10.79 (31.79) 55.56

RemoteControl 69.6 4.5 1.93 9.24 (13.99) -13.21 (20.44) 30.00 26.67 (35.38) -29.18 (20.47) 42.86 33.49 (31.89) 8.94 (27.67) 66.67

CreditCard 42.9 4.3 1.48 3.18 (7.19) -28.15 (11.70) 10.00 0.91 (2.09) -55.95 (22.44) 11.11 5.26 (8.08) -35.12 (24.57) 22.22

Table 6.2: Detection Statistics and Object Search Results Grouped by Target Classes. TP: true positive rate (%); FP: false
positive rate (%); r: average distance to the true positive detections (m). We estimated these values by running the
vision detector at 30 random camera poses per validation scene. Target objects are sorted by average detection range.
Parentheses contain 95% confidence interval. Metrics are success weighted by inverse path length (SPL) (Anderson et
al., 2018), discounted cumulative reward (DR), and success rate (SR). COS-POMDP performs more robustly for hard-
to-detect objects, such as ScrubBrush, CD, Candle, Knife, and CreditCard.
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6.8 Appendix

6.8.1 Proof of Theorem 1

Theorem 1. Given any policy π : ht → a, the distribution of histories is identical between
the COS-POMDP and the F-POMDP.

Proof. We prove this by induction. When t = 1, the statement is true because both his-
tories are empty. The inductive hypothesis assumes that the distributions Pr(ht) is the
same for the two POMDPs at t ≥ 1. Then, by definition, Pr(ht+1) = Pr(ht, at, zt) =
Pr(zt|ht, at) Pr(at|ht) Pr(ht). Since Pr(at|ht) is the same under the given π, we can con-
clude Pr(ht+1) is identical if the two POMDPs have the same Pr(zt|ht, at). We show that
this is true as follows.

First, we sum out the state st at time t:

Pr(zt|ht, at) =
∑

st

Pr(st, zt|ht, at) (6.9)

By definition of conditional probability,

=
∑

st

Pr(zt|st, ht, at) Pr(st|ht, at) (6.10)

Since st is does not depend on at (which affects st+1),

=
∑

st

Pr(zt|st, ht, at) Pr(st|ht) (6.11)

Suppose we are deriving this distribution for COS-POMDP, denoted as
PrCOS-POMDP(zt|ht, at). Then, by definition, the state st = (xtarget, srobot). Therefore,
we can write:

Pr
COS-POMDP

(zt|ht, at)

=
∑

xtarget,srobot

Pr(zt|xtarget, srobot, ht, at)

× Pr(xtarget, srobot|ht)

(6.12)

Summing out x1, . . . , xn,

=
∑

xtarget,srobot

∑

x1,··· ,xn

Pr(x1, . . . , xn, zt|xtarget, srobot, ht, at)

× Pr(xtarget, srobot|ht)

(6.13)
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Merging sum,

=
∑

x1,··· ,xn,
xtarget,srobot

Pr(x1, . . . , xn, zt|xtarget, srobot, ht, at)

× Pr(xtarget, srobot|ht)

(6.14)

By the definition of conditional probability,

=
∑

x1,··· ,xn,
xtarget,srobot

Pr(zt|x1, . . . , xn, xtarget, srobot, ht, at)

× Pr(x1, . . . , xn|xtarget, srobot, ht, at)

× Pr(xtarget, srobot|ht)

(6.15)

Again, because the object locations are independent of at,

=
∑

x1,··· ,xn,
xtarget,srobot

Pr(zt|x1, . . . , xn, xtarget, srobot, ht, at)

× Pr(x1, . . . , xn|xtarget, srobot, ht)

× Pr(xtarget, srobot|ht)

(6.16)

By the definition of conditional probability again,

=
∑

x1,··· ,xn,
xtarget,srobot

Pr(zt|x1, . . . , xn, xtarget, srobot, ht, at)

× Pr(x1, . . . , xn, xtarget, srobot|ht)

(6.17)

Note that (xtarget, srobot, x1, . . . , xn) is a state in F-POMDP. Denote the state space of F-
POMDP as SF. According to Eq (6.11), we can write the above Eq (6.17) as

=
∑

st∈SF

Pr(zt|st, ht, at) Pr(st|ht) (6.18)

= Pr
F-POMDP

(zt|ht, at) (6.19)
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6.8.2 Auxiliary Procedures

Algorithm 6 is the pseudocode of the SampleTopoGraph algorithm, implemented for our
experiments in AI2-THOR. We set M = 10, dsep = 1.0m, ζmin = 3, ζmax = 5. In our
implementation, the topological graph is resampled only if the cumulative belief captured
by the nodes in the current topological graph,

∑

srobot∈V
p(srobot), is below 50%. Otherwise,

the same topological graph will be returned. Note that depending on the application do-
main, a different algorithm for forming the topological graph may be used in the place of
SampleTopoGraph in the OnlineHierarchicalPlanning algorithm (Algorithm 5).

Algorithm 6: SampleTopoGraph
Input: X ,Srobot, btarget

Parameter: maximum number of nodes M , minimum separation between nodes
dsep, minimum and maximum out-degrees ζmin, ζmax

Output: A topological graph (V , E)
// Obtain mapping from srobot to a set of closest locations

foreach x ∈ X do

sclosest
robot ← argminsr∈Srobot

∥sr.pos− x∥;
U(sclosest

robot )← U(sclosest
robot ) ∪ {x};

end

// Construct probability distribution over Srobot using btarget

foreach srobot ∈ Srobot do
p(srobot)←

∑

x∈U(srobot)
btarget(x)

end

// Construct nodes and edges

V ← sample ≤M nodes from Srobot according to p such that any pair of nodes has a
minimum distance of dsep;
E ← add edges between nodes in V so that the graph is connected and each node has
an out-degree between ζmin and ζmax;

return (V , E)

93



6.8. APPENDIX

6.8.3 Detection Statistics for Correlated Object Classes

Table 6.3 shows the detection statistics for correlated object classes. The detection statistics
of target object classes can be found in Table 6.2.

Room Type Correlated Object Class TP FP r (m)

Bathroom

Mirror 76.9 3.7 2.10
ToiletPaperHanger 84.4 1.5 1.96
Towel 79.4 2.7 1.88
Toilet 86.3 3.5 1.81
SoapBar 73.2 1.8 1.53

Bedroom

DeskLamp 89.5 2.6 2.41
Bed 63.5 0.6 2.39
Mirror 86.0 0.6 2.27
LightSwitch 76.3 2.8 2.26
Laptop 75.9 1.2 2.19

Kitchen

LightSwitch 90.0 3.9 2.57
Microwave 75.3 5.6 2.31
StoveKnob 82.8 5.6 2.00
Lettuce 98.6 0.3 1.98
Plate 60.6 3.2 1.90

Living room

FloorLamp 71.7 5.1 3.44
Painting 85.2 4.0 3.18
LightSwitch 80.6 1.5 3.10
HousePlant 82.9 3.9 3.00
Pillow 67.4 2.8 2.84
Laptop 66.3 2.6 2.24

Table 6.3: Detection Statistics for Correlated Object Classes. TP: true positive rate (%);
FP: false positive rate (%); r: average distance to the true positive detections
(m). We estimated these values by running the vision detector at 30 random
camera poses per validation scene. The correlated object classes for each room
type are sorted by average detection range.
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6.8.4 Evaluation on a Toy Domain: HallwaySearch

HallwaySearch

This domain is designed to be minimal and allows the use of an offline POMDP solver
until convergence. We evaluate COS-POMDPs on this domain to investigate the influence
that detecting spatially correlated objects has on the expected return. In HallwaySearch,
there are two objects in a hallway: a target object and a spatially correlated object, both at
unknown locations sampled from a joint distribution. The robot has two detectors, one for
each object, that return a binary observation indicating successful or null detection of the
object. The detector for the target object has a small range that only returns a successful
detection if the robot is directly on top of the object. The detector for the spatially correlated
object has a larger range that can also return a successful detection from the two adjacent
locations. Both detectors are noisy, and false negatives and false positives may occur.

Baselines

• Corr. Solve the COS-POMDP.

• Target. Rather than solving the COS-POMDP, we solve a minimal POMDP for the
object search task that ignores the correlational information and assumes the object
locations are independent. As a result, the robot uses the target object detector, but
never needs its other detectors.

Experimental Procedure and Results

For HallwaySearch, we conduct two sets of experiments. In the first experiment, the hall-
way length varies from 4 to 8 while the robot has a perfect detector for both objects. In
the second experiment, the hallway length is fixed at 4 and the noise of the target detector
varies, specified by pairs of (false positive, false negative) rates that range from zero to
10%. We report both the optimal POMDP value as given by SARSOP and the approximate
discounted cumulative reward calculated over 100 trials.

The results for the HallwaySearch domain are shown in Figure 6.5. We observe that
considering the correlational information (green curves) leads to greater or equal optimal
POMDP value than not considering it (red curves) for all experimental settings. This sug-
gests that the optimal COS-POMDP policy makes use of the detector for the correlated
object, improving the expected returns. The actual return follow a similar pattern. In this
domain, the impact due to detector noise is significant, and using the correlational informa-
tion leads to more robust performance. The variance in the estimates of the actual returns
(left plots) is due to the stochasticity of the observation model and object locations. Over-
all, this experiment supports our first hypothesis: that using correlational information can
improve the performance of object search, both in expectation and in empirical returns.
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Figure 6.5: Results in the HallwaySearch domain. Top row shows estimated returns (left)
and POMDP optimal value (right) as a function of hallway length; bottom row
shows estimated returns (left) and POMDP optimal value (right) as a function
of detector noise levels. The Target baseline (red) does not consider correla-
tional information, and we can see that it always performs worse than Corr

(green), which does. Thus, this experiment supports our first hypothesis.
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CHAPTER 7

Spatial Language Understanding for

Object Search

7.1 Motivation - Why Spatial Language?

CONSIDER the scenario in which a tourist is looking for an ice cream truck in an amuse-
ment park. She asks a passer-by and gets the reply the ice cream truck is behind the

ticket booth. The tourist looks at the amusement park map and locates the ticket booth.
Then, she is able to infer a region corresponding to that statement and find the ice cream
truck, even though the spatial preposition behind is inherently ambiguous and subjective to
the passer-by. Robots capable of understanding spatial language can leverage prior knowl-
edge possessed by humans to search for objects more efficiently, and interface with humans
more naturally. Such capabilities can be useful for applications such as autonomous deliv-
ery and search-and-rescue, where the customer or people at the scene communicate with
the robot via natural language.

7.1.1 Challenges

This problem is challenging because humans produce diverse spatial language phrases
based on their observation of the environment and knowledge of target locations, yet none
of these factors are available to the robot. In addition, the robot may operate in a different
area than where it was trained. The robot must generalize its ability to understand spatial
language across environments.

. Project website: https://h2r.github.io/sloop/
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7.1. MOTIVATION - WHY SPATIAL LANGUAGE?

Figure 7.1: Given a spatial language description, a drone with limited field of view must
find target objects in a city-scale environment. Top row: example trial from
OpenStreetMap (OpenStreetMap contributors, 2017). Bottom row: example
trial from AirSim (S. Shah et al., 2017). Left side: belief over target location
after incorporating spatial language using the proposed approach. Right side:
Screenshot of simulation with search path.
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7.1.2 Remark on Previous Work

Prior works on spatial language understanding assume referenced objects already exist in
the robot’s world model (Tellex et al., 2011; Fasola & Matarić, 2013; Janner et al., 2018)
or within the robot’s field of view (Blukis, Brukhim, et al., 2018). Works that consider par-
tial observability do not handle ambiguous spatial prepositions (Hemachandra et al., 2015;
Wandzel et al., 2019) or assume a robot-centric frame of reference (Bisk et al., 2018; Patki
et al., 2020), limiting the ability to understand diverse spatial relations that provide critical
disambiguating information, such as behind the ticket booth. For downstream tasks, exist-
ing works primarily consider spatial language as goal or trajectory specification (A. Vogel
& Jurafsky, 2010; Kollar et al., 2010). They require large datasets of spatial language
paired with reference paths to learn a policy by end-to-end reward-based learning (Jain et
al., 2019; X. Wang et al., 2019) or imitation learning (Blukis, Misra, et al., 2018), which
is expensive to acquire for realistic environments (such as urban areas), and generalization
to such environments is an ongoing challenge (Blukis, Brukhim, et al., 2018; Bisk et al.,
2016; Blukis et al., 2019).

Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998) is a
principled decision making framework widely used in the object search literature (Aydemir
et al., 2013; Xiao et al., 2019; Zheng et al., 2021a), due to its ability to capture uncertainty
in object locations and the robot’s perception. Wandzel et al. (2019) proposed Object-
Oriented POMDP (OO-POMDP), which factors the state and observation spaces by objects
and is designed to model tasks in human environments.

Spatial language is a way of communicating spatial information of objects and their
relations using spatial prepositions (e.g. on, between, front) (Hayward & Tarr, 1995). Un-
derstanding spatial language for decision making requires the robot to map symbols of the
given language description to concepts and structures in the world, a problem referred to as
language grounding. Most prior works on spatial language grounding assume a fully ob-
servable domain (Tellex et al., 2011; Fasola & Matarić, 2013; Blukis, Brukhim, et al., 2018;
A. Vogel & Jurafsky, 2010; Kollar et al., 2010), where the referenced objects have known
locations or are within the field of view, and the concern is synthesizing navigation behav-
ior faithful to a given instruction (e.g. Go to the right side of the rock (Blukis, Brukhim,
et al., 2018)). Recent works aim to map such instructions directly to low-level controls or
navigation trajectories leveraging deep reinforcement learning (A. Vogel & Jurafsky, 2010;
Jain et al., 2019; Blukis et al., 2020) or imitation learning (Blukis, Brukhim, et al., 2018;
X. Wang et al., 2019; Blukis, Misra, et al., 2018), requiring large datasets of instructions
paired with demonstrations. In this work, the referenced target objects have unknown loca-
tions, and the robot has a limited field of view. We regard the spatial language description
as observation and obtain policy through online planning.

Spatial language understanding in partially observable environments is an emerging
area of study (Hemachandra et al., 2015; Wandzel et al., 2019; Patki et al., 2020; Thoma-
son et al., 2019). Thomason et al. (2019) propose a domain where the robot, tasked to
reach a goal room, has access to a dialogue with an oracle discussing the location of the

99



7.2. CONTRIBUTIONS

goal during execution. Hemachandra et al. (2015) and Patki et al. (2020) infer a distri-
bution over semantic maps for instruction following then plan actions through behavior
inference. These instructions are typically FoR-independent or involve only the robot’s
own FoR. In contrast, we consider language descriptions with FoRs relative to referenced
landmarks. Wandzel et al. (2019) propose the Object-Oriented POMDP framework for
object search and a proof-of-concept keyword-based model for language understanding in
indoor space. Our work handles diverse spatial language using a novel spatial language ob-
servation model and focuses on search in cityscale environments. We evaluate our system
against a keyword-based baseline similar to the one in (Wandzel et al., 2019).

Cognitive scientists have grouped FoRs into three categories: absolute, intrinsic, and
relative (Majid et al., 2004; Shusterman & Li, 2016). Absolute FoRs (e.g. for north) are
fixed and depend on the agreement between speakers of the same language. Intrinsic FoRs
(e.g. for at the door of the house) depend only on properties of the referenced object.
Relative FoRs (e.g. for behind the ticket booth) depend on both properties of the referenced
object and the perspective of the observer. In this chapter, spatial descriptions are provided
by human observers who may impose relative FoRs or absolute FoRs.

7.2 Contributions

In this work, we make the following contributions:

• We introduce SLOOP (Spatial Language Object-Oriented POMDP), which extends
OO-POMDP by considering spatial language as an additional perceptual modality.
We derive a probabilistic model to capture the uncertainty of the language through
referenced objects and landmarks. This enables the robot to incorporate into its belief
state spatial information about the referenced object via belief update.

• We apply SLOOP to object search in city-scale environments given a spatial language
description of target locations. Search begins after the initial belief update upon
receiving the spatial language. Note that in general, because SLOOP regards spatial
language as an observation, the language can be received during task execution.

• We collected a dataset of five city maps from OpenStreetMap (OpenStreetMap con-
tributors, 2017) as well as spatial language descriptions through Amazon Mechanical
Turk (AMT).

• To understand ambiguous, context-dependent prepositions (e.g. behind), we develop
a simple convolutional neural network that infers the latent frame of reference (FoR)
given an egocentric synthetic image of the referenced landmark and surrounding con-
text. This FoR prediction model is integrated into the spatial language observation
model in SLOOP.

• We evaluate both the FoR prediction model and the object search performance under
SLOOP using the collected dataset. Results show that our method leads to search

100



CHAPTER 7. SPATIAL LANGUAGE UNDERSTANDING FOR OBJECT SEARCH

strategies that find objects faster with higher success rate by exploiting spatial in-
formation from language compared to a keyword-based baseline used in prior work
(Wandzel et al., 2019). We also report results for varying language complexity and
spatial prepositions to discuss advantages and limitations of our approach.

• We demonstrate SLOOP for object search in AirSim (S. Shah et al., 2017), a realistic
drone simulator shown in Fig. 7.1, where the drone is tasked to find cars in a neigh-
borhood environment. We also demonstrate SLOOP on a real-robot by integrating it
with the Boston Dynamics Spot robot searching for objects in a lab environment.

7.3 Problem Formulation

We are interested in the problem setting similar to the opening scenario in the Motivation -
Why Spatial Language?. A robot is tasked to search for N targets in an urban or suburban
area represented as a discrete 2D map of landmarksM. The robot is equipped with the map
and can detect the targets within the field of view. However, the robot has no knowledge
of object locations a priori, and the map size is substantially larger than the sensor’s field
of view, making brute-force search infeasible. A human with access to the same map and
prior knowledge of object locations provides the robot with a natural language description.
For example, given the map in Fig. 7.1, one could say the red car is behind Jeffrey’s House,

around Rene’s House. The language is assumed to mention some of the target objects
and their spatial relationships to some of the known landmarks, yet there is no assumption
about how such information is described. To be successful, the robot must incorporate
information from spatial language to efficiently search for the target object.

This problem can be formulated as the multi-object search (MOS) task (Wandzel et
al., 2019), modeled as an OO-POMDP. The state si = (xi, yi) is the location for target i,
1 ≤ i ≤ N . The robot state sr = (x, y, θ,F) consists of the robot’s pose (x, y, θ) and a
set of found targets F ⊆ {1, · · · , N}. There are three types of actions: MOVE changes
the robot pose (possibly stochastically); LOOK processes sensory information within the
current field-of-view; FIND(i) marks object i as found. In our implementation of MOS, a
LOOK action is automatically taken following every MOVE. Upon taking FIND, the robot
receives reward Rmax ≫ 0 if an unfound object is within the field of view, and Rmin ≪ 0
otherwise. Other actions receive Rstep < 0. The desired policy accounts for the belief over
target locations while efficiently exploring the map.

Note that in our evaluation, we use a synthetic detector that returns observations con-
ditioned on the ground truth object locations for belief update during execution. Our
POMDP-based framework can easily make use of a realistic observation model instead,
for example, based on processing visual data (Xiao et al., 2019; Monsó et al., 2012). Train-
ing vision-based object detectors is outside the scope of this chapter. Our focus is on spatial
language understanding for planning object search strategies.

In the next section, we introduce SLOOP, with a particular focus on the observation
space and observation model. Then, to apply SLOOP to our problem setting, we describe
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Figure 7.2: We consider a spatial language description as an observation oR, which is a set
of (f, r, γ) tuples, obtained through parsing the input language. We propose
an observation model that incorporates the spatial information in oR into the
robot’s belief about target locations, which benefits subsequent object search
performance.

our implementation of the spatial language observation model on 2D city maps, which
includes a convolutional network model for FoR prediction.

7.4 Spatial Language Object-Oriented POMDP (SLOOP)

SLOOP augments an OO-POMDP defined over a given map M with a spatial language
observation space and a spatial language observation model. The map M consists of a
discrete set of locations and contains landmark information (e.g. landmark’s name, location
and geometry), such that N objects exist on the map at possibly unknown locations. Thus,
the state space can be factored into a set of N objects plus the given map M and robot
state s = (s1, · · · , sN , sr,M). SLOOP does not augment the action space, thus the action
space of the underlying OO-POMDP is left unchanged. Because the transition and reward
functions are, by definition, independent of observations, they are also kept unchanged in
SLOOP. Next, we introduce spatial language observations.

7.4.1 Spatial Language Observation

According to Landau & Jackendoff (1993), the standard linguistic representation of an ob-
ject’s place requires three elements: the object to be located (figure), the reference object
(ground), and their relationship (spatial relation). We follow this convention and represent
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spatial information from a given natural language description in terms of atomic proposi-
tions, each represented as a tuple of the form (f, r, γ), where f is the figure, r is the spatial

relation and γ is the ground. In our case, f refers to a target object, γ refers to a landmark
on the map, and r is a predicate that is true if the locations of f and γ satisfy the seman-
tics of the spatial relation. As an example, given spatial language the red Honda is behind

Belmont, near Hi-Lo, two tuples of this form can be extracted (parentheses indicate role):
{(RedCar(f ), behind(r), Belmont(γ)), (RedCar(f ), near(r), HiLo(γ))}.

We define a spatial language observation as a set of (f, r, γ) tuples extracted from a
given spatial language. We define the spatial language observation space to be the space of
all possible tuples of such form for a given map, objects, and a set of spatial relations.

7.4.2 Spatial Language Observation Model

We denote a spatial language observation as oR. Our goal now is to derive Pr(oR|s′, a), the
observation model for spatial language. We can split oR into subsets, oR = ∪Ni=1oRi

, where
each oRi

= ∪Lk=1(fi, rk, γk), L = |oRi
| is the set of tuples where the figure is target object

i. Since the human describes the target objects with respect to landmarks on the map, the
spatial language is conditionally independent from the robot state and action given mapM
and the target locations s1, · · · , sN . Therefore,

Pr(oR|s
′, a) = Pr(∪Ni=1oRi

|s′1, · · · , s
′
N ,M) (7.1)

We make a simplifying assumption that oRi
is conditionally independent of all other oRj

and s′j (j ̸= i) given s′i and mapM. We make this assumption because the human observer
is capable of producing a language oRi

to describe target i given just the target location si
and the mapM. Thus,

Pr(∪Ni=1oRi
|s′1, · · · , s

′
N ,M) =

N
∏

i=1

Pr(oRi
|s′i,M) (7.2)

where Pr(oRi
|s′i,M) models the spatial information in the language description for object

i. For each spatial relation rj in oRi
whose interpretation depends on the FoR imposed

by the human observer (e.g. behind), we introduce a corresponding random variable Ψj

denoting the FoR vector that distributes according to the indicator function Pr(Ψj = ψj) =
1(ψj = ψ∗

j ), where ψ∗
j is the one imposed by the human, unknown to the robot. Then, our

model for Pr(oRi
|s′i,M) becomes:

Pr(oRi
|s′i,M) =

L
∏

j=1

Pr(rj|γj, ψ
∗
j , fi, s

′
i,M) (7.3)

The step-by-step derivation can be found in the supplementary material. It is straightfor-
ward to extend this model as a mixture model Pr(oRi

|s′i,M) =
∑m

k=1wk Prk(oRi
|s′i,M),

∑m

k=1wk = 1, where multiple interpretations of the spatial language are used to form
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Figure 7.3: Frame of Reference Prediction Model Design. In this example taken from
our dataset, the model is predicting the frame of reference for the preposition
front. The grayscale image is rendered with color ranging from blue (black),
green (gray) to yellow (white). Green highlights the referenced landmark, dark
blue the streets, blue the surrounding buildings, and yellow the background.

separate distributions then combined into a weighted-sum. This effectively smooths the
distribution under individual interpretations, which improves object search performance in
our evaluation (Figure 7.7),

However, to proceed modeling Pr(rj|γj, ψ
∗
j , fi, s

′
i,M) in Eq. (7.3), we notice that it

depends on the unknown FoR ψ∗
j . Therefore, we consider two subproblems instead: The

approximation of ψ∗
j by a predicted value ψ̂ and the modeling of Pr(rj|γj, ψ̂j, fi, s′i,M).

Next, we describe our approach to these two subproblems for object search in city-scale
environments.

7.4.3 Learning to Predict Latent Frame of Reference

Here we describe our approach to predict ψ∗
j corresponding to a given (fi, rj, γj) tuple,

which is critical for correct resolution of spatial relations. Taking inspiration from the ice
cream truck example where the tourist can infer a potential FoR by looking at the 2D map
of the park, we train a model that predicts the human observer’s imposed FoR based on the
environment context embedded in the map.

We define an FoR in a 2D map as a single vector ψj = (x, y, θ) located at (x, y) at an
angle θ with respect to the +x axis of the map. We use the center-of-mass of the ground as
the origin (x, y). We make this approximation since our data collection shows that when
looking at a 2D map, human observers tend to consider the landmark as a whole without
decomposing it into parts. Therefore, the FoR prediction problem becomes a regression
problem of predicting the angle θ given a representation of the environment context.

We design a convolutional neural network, which takes as input a grayscale image
representation of the environment context where the ground in the spatial relation is high-
lighted. Surrounding landmarks are also highlighted with different brightness for streets
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and buildings (Figure 7.3). The image is shifted to be egocentric with respect to the refer-
enced landmark, and cropped into a 28×28 pixel image. The intuition is to have the model
focus on immediate surroundings, as landmarks that are far away tend not to contribute to
inferring the referenced landmark’s properties. The model consists of two standard con-
volution modules followed by three fully connected layers. These convolution modules
extract an 800-dimension feature vector, feeding into the fully connected layers, which
eventually output a single value for the FoR angle. We name this model EGO-CTX for
egocentric shift of the contextual representation.

Regarding the loss function, a direct comparison with the labeled FoR angle is not
desirable. For example, suppose the labeled angle is 0 (in radians). Then, a predicted angle
of 0.5 is qualitatively the same as another predicted angle of −0.5 or 2π − 0.5. For this
reason, we apply the following treatment to the difference between predicted angle θ and
the labeled angle θ∗. Here, both θ and θ∗ have been reduced to be between 0 to 2π:

ℓ(θ, θ∗) =

{

2π − |θ − θ∗|, if |θ − θ∗| > π,

|θ − θ∗|, otherwise
(7.4)

This ensures that the angular deviation used to compute the loss ranges between 0 to π.
The learning objective is to reduce such deviation to zero. To this end, we minimize the
mean-squared error loss L(θ,θ∗) = 1

N

∑N

i=1 (ℓ(θi, θ
∗
i ))

2, where θ,θ∗ are predicted and
annotated angles in the training set of sizeN . This objective gives greater penalty to angular
deviations farther away from zero.

In our experiments, we combine the data by antonyms and train two models for each
baseline: a front model used to predict FoRs for front and behind, and a left model used
for left and right1. We augment the training data by random rotations for front but not for
left.2 We use the Adam optimizer (Kingma & Ba, 2015) to update the network weights
with a fixed learning rate of 1 × 10−5. Early stopping based on validation set loss is used
with a patience of 20 epochs (Prechelt, 1998).

7.4.4 Modeling Spatial Relations

We model Pr(rj|γj, ψ̂j, fi, s′i,M) as a Gaussian following prior work and evidence from
animal behavior (Fasola & Mataric, 2013; O’Keefe & Burgess, 1996):

Pr(rj|γj, ψ̂j, fi, s
′
i,M)

= |u(s′i, γj,M) • v(fi, rj, γj, ψ̂j)|

× exp
(

−dist(s′i, γj,M)2/2σ2
)

(7.5)

1. We do not train a single model for all four prepositions since left and right often also suggest an absolute

FoR used by the language provider when looking at 2D maps, while front and behind typically suggest a
relative FoR.

2. Again, because left and right may imply either absolute or relative FoR.
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where σ controls the steepness of the distribution based on the spatial relation’s semantics
and landmark size, and dist(s′i, γj,M) is the distance between s′i to the closest position
within the ground γj in mapM, and u(s′i, γj,M) • v(fi, rj, γj, ψ̂j) is the dot product be-
tween u(s′i, γj,M), the unit vector from s′i to the closest position within the ground γj in
map M, and v(fi, rj, γj, ψ̂j), a unit vector in in the direction that satisfies the semantics
of the proposition (fi, rj, γj) by rotating ψ̂j . The dot product is skipped for prepositions
that do not require FoRs (e.g. near). We refer to Landau & Jackendoff (1993) for a list of
prepositions meaningful in 2D that require FoRs: above, below, down, top, under, north,

east, south, west, northwest, northeast, southwest, southeast, front, behind, left, right.

7.5 Data Collection

In this section, we describe our data collection process as well as a pipeline for spatial
information extraction from natural language. We use maps from OpenStreetMap (OSM),
a free and open-source database of the world map with voluntary landmark contributions
(OpenStreetMap contributors, 2017). We scrape landmarks in 40,000m2 grid-regions with
a resolution of 5m by 5m grid cells in five different cities leading to a dimension of 41×41
per grid map3: Austin, TX; Cleveland, OH; Denver, CO; Honolulu, HI, and Washington,
DC. Geographic coordinates of OSM landmarks are translated into grid map coordinates.

To collect a variety of spatial language descriptions from each city, we randomly gen-
erate 30 environment configurations for each city, each with two target objects. We prompt
Amazon Mechanical Turk (AMT) workers to describe the location of the target objects and
specify that the robot knows the map but does not know target locations. Each config-
uration is used to obtain language descriptions from up to eleven different workers. The
descriptions are parsed using our pipeline described next in Sec. 7.5.1. Examples are shown
in Fig. 7.4. Screenshots of the survey and statistics of the dataset are provided in the sup-
plementary material.

The authors annotated FoRs for front, behind, left and right through a custom annota-
tion tool which displays the AMT worker’s language alongside the map without targets.
We manually infer the FoR used by the AMT worker, similar to what the robot is tasked to
do. This set of annotations are used as data to train and evaluate our FoR prediction model.
Prepositions such as north, northeast have absolute FoRs with known direction. Others are
either difficult to annotate (e.g. across) or have too little samples (e.g. above, below).

7.5.1 Spatial Information Extraction from Natural Language

We designed a pipeline to extract spatial relation triplets from the natural language using
the spaCy library (Honnibal & Montani, 2017) for noun phrase (NP) identification and

3. Because of the curvature of the earth, the grid cells and overall region is not perfectly square, which is
why the grid is not perfectly 40x40
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Figure 7.4: Map screenshot shown to AMT workers paired with collected spatial language
descriptions.

dependency parsing, as it achieves good performance on these tasks. Extracted NPs are
matched against synonyms of target and landmark symbols using cosine similarity. All
paths from targets to landmarks in the dependency parse tree are extracted to form the
(f, r, γ) tuples used as spatial language observations (Sec. 7.4).

Our spatial language understanding models assume as input language that has been
parsed into (f, r, γ) tuples, but is not dependent on this exact pipeline for doing so. Future
work could explore alternative methods for parsing and entity linking, including approaches
optimized for the task of spatial language resolution. In our end-to-end experiments, we
report the task performance both when using this parsing pipeline and when using manually
annotated (f, r, γ) tuples to indicate the influence of parsing on search performance.

7.6 Evaluation

7.6.1 Evaluation of Frame of Reference Prediction Model

We test the generalizability of our FoR prediction model (EGO-CTX) by cross-validation.
The model is trained on maps from four cities and tested on the remaining held-out city
for all possible splits. We evaluate the model by the angular deviation between predicted
and annotated FoR angles, in comparison with three baselines and human performance:
The first is a variation (CTX) that uses a synthetic image with the same kind of contextual
representation yet without egocentric shift. The second is another variation (EGO) that per-
forms egocentric shift and also crops a 28× 28 window, but only highlights the referenced
landmark at the center without contextual information. The random baseline (Random)
predicts the angle at random uniformly between [0, 2π]. The Human performance is ob-
tained by first computing the differences between pairs of annotated FoR angles for the
same landmarks (Eq. 7.4), then averaging over all such differences for landmarks per city.
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Each pair of FoRs may be annotated by the same or different annotators. Taking the average
gives a sense of the disagreement among the annotators’ interpretation of spatial relations.

Figure 7.5: FoR prediction results. The solid orange line shows the median, and the dotted
green line shows the mean. The circles are outliers. Lower is better.

Figure 7.6: Visualization of FoR predictions for front. Darker arrows indicate labeled FoR,
while brighter arrows are predicted FoR.

The results are shown in Figure 7.5. Each boxplot summarizes the means of baseline
performance in the five cross-validation splits. The results demonstrate that EGO-CTX

shows generalizable behavior close to the human annotators, especially for front. We ob-
serve that our model is able to predict front FoRs roughly perpendicular to streets against
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other buildings, while the baselines often fail to do so (Figure 7.6). The competitive per-
formance of the neural network baselines in left indicates that for left and right, the FoR
annotations are often absolute, i.e. independent of the context. Our model as well as base-
lines are limited in determining, for example, whether the speaker refers to the left side of
the map (absolute FoR), or the left side of the street relative to a perceived forward direction
(relative FoR).

7.6.2 End-to-End Evaluation

We randomly select 20 spatial descriptions per city. We task the robot to search for each
target object mentioned in every description separately, resulting in a total of 40 search
trials per city, 200 in total. Cross-validation is employed such that for each city, the robot
uses the FoR prediction model trained on the other four cities. For each step, the robot can
either move or mark an object as detected. The robot can move by rotating clockwise or
counterclockwise for 45 degrees, or move forward by 3 grid cells (15m). The robot receives
observation through an on-board fan-shaped sensor after every move. The sensor has a field
of view with an angle of 45 degrees and a varying depth of 3, 4, 5 (15m, 20m, 25m). As
the field of view becomes smaller, the search task is expected to be more difficult. The
robot receives Rstep = −10 step cost for moving and Rmax = +1000 for correctly detecting
the target, and Rmin = −1000 if the detection is incorrect. The rest of the domain setup
follows (Wandzel et al., 2019).

Baselines. SLOOP uses the spatial language observation model without mixture, that
is, for each object, it computes the observation distribution in Eq. (7.3) by multiplying
the distributions for each spatial relation; With the same observation distribution, SLOOP

(m=2) mixes in one distribution computed by treating all prepositions as near with weight
0.2; Also with the same observation distribution, SLOOP (m=4) mixes in three additional
distributions: one ignores FoR-dependent prepositions, one treating all prepositions as
near, one treating all prepositions as at, with weights 0.25, 0.1, 0.05, respectively. The
baseline MOS (keyword) uses a keyword-based model based on (Wandzel et al., 2019)
that assigns a uniform probability over referenced landmarks in a spatial language but does
not incorporate information from spatial prepositions. Finally, informed and uniform are
upper and lower bounds: for the informed, the agent has an initial belief that has a small
Gaussian noise over the groundtruth location4; uniform uses a uniform prior. We also
report the performance with annotated spatial relations and landmarks to show search per-
formance if the languages are parsed correctly.

For all baselines, we use an online POMDP solver, POMCP (Silver & Veness, 2010)
but with a histogram belief representation to avoid particle depletion. The number of sim-
ulations per planning step is 1000 for all baselines. The discount factor is set to 0.95. The
robot is allowed to search for 200 steps per search task, since search beyond this point will
earn very little discounted reward and is not efficient.

4. The noise is necessary for object search, otherwise the task is trivial.
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Figure 7.7: Number of completed search tasks as the maximum search step increases.
Steeper slope indicates greater efficiency and success rate of search.

Figure 7.8: Example object search trial for description “the green toyota is behind vel-
vet dog” from AMT. The green region shows the distribution over the object
location after interpreting the description. Our method enables probabilistic
interpretation of the spatial language leading to more efficient search strategy.
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Results. We evaluate the effectiveness and efficiency of the search by the amount of
search tasks the robot completed (i.e. successfully found the target) under a given limit of
search steps (ranging from 1 to 200). Results are shown in Figure 7.7. The results show that
using spatial language with SLOOP outperforms the keyword-based approach in MOS. The
gain in the discounted reward is statistically significant over all sensor ranges comparing
SLOOP with MOS (keyword), and for sensor range 3 comparing the annotated versions.
We observe that using mixture models for spatial language improves search efficiency and
success rate over SLOOP. We observe improvement when the system is given annotated
spatial relations. This suggests the important role of language parsing for spatial language
understanding. Figure 7.8 shows a trial comparing SLOOP and MOS (keyword).

spatial No. MOS (keyword) SLOOP SLOOP (m=4)
preposition trials annodated annotated annotated

on 59 200.65 (78.06) 267.00 (76.45) 290.05 (70.51)

at 58 179.42 (81.46) 237.36 (81.03) 238.24 (80.50)

near 35 97.64 (135.39) 280.69 (109.00) 249.35 (113.60)
between 25 21.48 (116.93) 172.93 (143.77) 175.59 (136.71)

in 22 302.05 (151.42) 398.88 (119.32) 307.45 (141.67)

north 9 222.28 (291.13) 201.88 (296.49) 365.14 (246.05)

southeast 7 306.77 (341.43) 553.82 (174.04) 549.43 (165.83)

southwest 7 -75.67 (205.98) 1.37 (271.46) -27.63 (281.89)
east 6 56.57 (337.58) 290.68 (303.53) 439.99 (276.85)

northwest 6 385.41 (320.82) 43.57 (282.88) -1.82 (256.71)
south 6 79.12 (289.54) 310.29 (410.04) 494.26 (161.60)

west 4 -160.91 (188.02) 234.93 (587.57) 327.13 (245.28)

northeast 2 -167.99 (660.76) 206.42 (138.93) 213.17 (977.62)

front 25 246.96 (142.45) 168.91 (150.41) 160.55 (136.88)
behind 8 128.47 (356.25) 101.20 (333.38) 140.92 (333.61)

right 4 19.75 (697.88) 160.14 (601.54) 336.00 (725.84)

left 3 247.35 (363.32) 192.93 (393.75) 231.75 (330.33)

front (good) 15 255.85 (210.46) 421.83 (143.65) 222.67 (264.50)
behind (good) 6 145.26 (489.55) 207.58 (430.52) 359.80 (753.15)

front (bad) 10 281.04 (226.47) -208.92 (11.39) 93.80 (176.11)
behind (bad) 2 78.11 (3771.84) -217.95 (23.53) -77.97 (223.71)

Table 7.1: Mean (95% CI) of discounted cumulative reward for different prepositions eval-
uated on language descriptions with annotated spatial relations. The value with
highest mean per row is bolded.

We analyze the performance with respect to different spatial prepositions. We report
results for annotated languages as they reflect the performance obtained if the prepositions
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are correctly identified. Results for the smallest sensor range of 3 is shown in Table 7.1.
SLOOP outperforms the baseline for the majority of prepositions. For prepositions front,
behind, left, and right, our investigation shows the performance of SLOOP polarizes where
trials with “good” FoR (i.e. ones in the correct direction towards the true target location)
leads to a much greater performance than the counterpart (“bad” FoR). Yet, MOS (key-

word) is not subject to such polarization and the target often appears close to the landmark
for these prepositions. We observe that SLOOP (m=4) using mixture is able to consis-
tently improve the reward for most of the prepositions, indicating the benefit of modeling
multiple interpretations of the spatial language.

No. spatial No. MOS (keyword) SLOOP SLOOP (m=4)
prepositions trials annotated annotated annotated

1 100 234.32 (72.64) 320.91 (64.23) 289.34 (66.42)
2 83 179.18 (68.60) 264.08 (62.39) 286.19 (60.83)

3 14 26.96 (165.98) 115.44 (202.42) 215.30 (200.99)

Table 7.2: Mean (95% CI) of discounted cumulative reward for completed search tasks as
language complexity (number of spatial relations) increases.

Finally, we analyze the relationship between the performance and varying complexity
of the language description, indicated by the number of spatial relations used to describe the
target location. Again, we used annotated languages for this experiment for the smallest
sensor range of 3. Results in Table 7.2 indicate that understanding spatial language can
benefit search performance, with a wider gain as the number of spatial relations increases.
Again, using mixture model in SLOOP (m=4) improves the performance even more.

7.6.3 Demonstration on AirSim

We implemented SLOOP (m=4) on AirSim (S. Shah et al., 2017), a realistic drone simu-
lator built on top of Unreal Engine (Epic Games, n.d.). Similar to our evaluation in Open-
StreetMap, we discretize the map into 41×41 grid cells. We use the same fan-shaped model
of on-board sensor as in OpenStreetMap. As mentioned in Sec. 7.3, sensor observations are
synthetic, based on the ground-truth state. Additionally, although the underlying localiza-
tion and control is continuous, the drone plans discrete navigation actions (move forward,
rotate left 90◦, rotate right 90◦). We annotated landmarks (houses and streets) in the scene
on the 2D grid map. Houses with heights greater than flight height are subject to colli-
sion and results in a large penalty reward (-1000). Checking for collision in the POMDP
model for this domain helped prevent such behavior during planning. We found that the
FoR prediction model trained on OpenStreetMap generalizes to this domain, consistently
producing reasonable FoR predictions for front and behind. This shows the benefit of using
synthetic images of top-down street maps. The drone is able to plan actions to search back
and forth to find the object, despite given inexact spatial language description. Please refer
to the video demo on our project for the examples shown in Fig. 7.1 and 7.9.
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Figure 7.9: Example trial from AirSim demonstration. Given spatial language description:
The red car is by the side of Main street in front of Zoey’s House (red), while

the green car is within Annie’s House on the right side of East street (green).

Left: belief over two target objects (red and green car). Right: screenshot from
AirSim. Video: https://youtu.be/V54RY8v8VmA

7.6.4 Demonstration on Boston Dynamics Spot

We take one step further and demonstrate SLOOP on a physical robot. In particular, we
task a Boston Dynamics Spot robot to find a book in a lab environment. We developed a 2D
MOS-based object search system integrated with ROS that can interact with Spot through
the Spot SDK. This system uses histogram-based 2D belief, and the object search POMDP
model is the same 2D MOS model used for simulation experiments.5 Object detection
was done through projecting segmentation masks obtained with Mask-RCNN (He et al.,
2017) to 2D grid cells using depth from Spot’s gripper camera. To obtain the same kind
of 2D grid map representation as in simulation experiments, we first use Spot’s built-in
capability to create a 3D point cloud map of the lab and then project it down to 2D, where
points are filtered to separate free space from obstacles. Then, in order to apply SLOOP
for 2D MOS, we build a map of landmarks similar to OpenStreetMap by driving the robot
around the lab, and recording object detection results projected onto a 2D grid, and then
assigning a unique name to each detected object. Since our FoR prediction model works
over synthetic images, they can be directly applied to this landmark map. The end result is
an interface that allows a person to type in a free-form spatial language with respect to the

5. In fact, this system is the npredecessor to GenMOS for 3D-MOS in Chapter 5, GenMOS is robot-
independent (does not rely on ROS).
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landmarks, and the belief gets updated after the system interprets the spatial language, and
the robot goes off to search under the updated belief; Planning is based on the hierarchical
planning algorithm introduced for COS-POMDP in Chapter 6 that combines local, fine-
grained search actions with navigation subgoals over a topological graph. In Figure 7.10,
we contrast the system’s behavior with and without spatial language. SLOOP enables the
robot to quickly narrow down the search region given “the book is in front of the Monitor,”

whereas the baseline without language results in searching all over the lab.

Figure 7.10: Demonstration of SLOOP on Spot, given the spatial language “the book is in

front of the Monitor.” The total time used for “with spatial language” includes
the time to initially type in the language, while the baseline without language
proceeds to search right off the bat. Nevertheless, SLOOP quickly narrows
down the search space and the robot successfully finds the book.
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7.7 Summary

This chapter first presents a formalism for integrating spatial language into the POMDP be-
lief state as an observation, then a convolutional neural network for FoR prediction shown
to generalize well to new cities. Simulation experiments show that our system signifi-
cantly improves object search efficiency and effectiveness in city-scale domains through
understanding spatial language. For future work, we plan to investigate compositionality
in spatial language for partially observable domains.

7.8 Appendix

7.8.1 Derivation of Spatial Language Observation Model

Here we provide the derivation for Eq. (7.3). Using the definition of oRi
,

Pr(oRi
|s′i,M) = Pr(fi, r1, γ1, · · · , rL, γL|s

′
i,M) (7.6)

= Pr(r1, · · · , rL|γ1, · · · , γL, fi, s
′
i,M)× Pr(γ1, · · · , γL, fi|s

′
i,M) (7.7)

=
1

Z

L
∏

j=1

Pr(rj|γj, fi, s
′
i,M) (7.8)

The first term in (7.7) is factored by individual spatial relations, because each rj is a pred-
icate that, by definition, involves only the figure fi and the ground γj , therefore it is con-
ditionally independent of all other relations and grounds given fi, its location s′i, and the
landmark γj and its features contained inM. Because the robot has no prior knowledge
regarding the human observer’s language use,6 the second term in (7.7) is uniform with
probability 1/Z where Z is the constant size of the support for γ1, · · · , γL, fi. This con-
stant can be canceled out during POMDP belief update upon receiving the spatial language
observation, using the belief update formula in Section 2.2.2. We omit this constant in
Eq. (7.3).

For predicates such as behind, its truth value depends on the relative FoR imposed
by the human observer who knows the target location. Denote the FoR vector corre-
sponding to rj as a random variable Ψj that distributes according to the indicator function
Pr(Ψj = ψj) = ✶(ψj = ψ∗

j ), where ψ∗
j is the one imposed by the human. Then regarding

Pr(rj|γj, fi, s
′
i,M), we can sum out Ψj:

Pr(rj|γj, fi, s
′
i,M) =

∑

ψj
Pr(rj, γj, fi, s

′
i,M|ψj) Pr(ψj)

Pr(γj, fi, s′i,M)
(7.9)

6. In general, the human observer may produce spatial language that mentions arbitrary landmarks and
figures whether they make sense or not.
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Since the distribution for Ψj is an indicator function,

=
Pr(rj, γj, fi, s

′
i,M|ψ

∗
j )

Pr(γj, fi, s′i,M)
(7.10)

By the law of total probability,

=
Pr(rj|γj, ψ

∗
j , fi, s

′
i,M) Pr(γj, fi|s

′
i,M, ψ∗

j ) Pr(s
′
i,M|ψ

∗
j )

Pr(γj, fi|s′i,M) Pr(s′i,M)
(7.11)

Using the fact that s′i,M is independent of ψ∗
j ,

=
Pr(rj|γj, ψ

∗
j , fi, s

′
i,M) Pr(γj, fi|s

′
i,M, ψ∗

j ) Pr(s
′
i,M)

Pr(γj, fi|s′i,M) Pr(s′i,M)
(7.12)

Canceling out Pr(s′i,M),

=
Pr(rj|γj, ψ

∗
j , fi, s

′
i,M) Pr(γj, fi|s

′
i,M, ψ∗

j )

Pr(γj, fi|s′i,M)
(7.13)

Similar to (7.7)-(7.8), Pr(γj, fi|s′i,M, ψ∗
j ) and Pr(γj, fi|s

′
i,M) are uniform with the same

support. Canceling them out,

= Pr(rj|γj, ψ
∗
j , fi, s

′
i,M) (7.14)

7.8.2 Data Collection Details

Amazon Mechanical Turk Questionnaire

As described in Section 7.5, we collect a variety of spatial language descriptions from five
cities. We randomly generate 10 unique configurations of two object locations for every
pair of object symbols from {RedBike, RedCar, RedCar}. Each configuration is used to
obtain language descriptions from up to eleven different workers. By showing a picture
of the objects placed on the map screenshot, we prompt AMT workers to describe the
location of the target objects. We first show an example task as shown in Fig 7.11 (top).
Then we prompt them with the actual task and a text box to submit their response, as shown
in Fig 7.11 (bottom). Note that we specify that the robot does not know where the target
objects are, but that it knows the buildings, streets and other landmarks available on the
map. We encourage them to use the information available on the map in their description.
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Figure 7.11: AMT Questionnaire Screenshot. Top: an example task shown to the AMT
workers prior to the actual task that doesn’t vary from prompt to prompt.
Bottom: the actual task shown to the AMT workers. The objects and the
locations change in every prompt and are all unique.
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7.8.3 Distribution of Collected Predicates

Each description is parsed using our pipeline described in Section 7.5.1. 1,521 out of 1,650
gathered descriptions were successfully parsed; meaning at least one spatial relation was
extracted from the sentence. The distribution of all spatial predicates are shown in Fig 7.12.
Note that we include the word “is” on the list since it often appears in “is in” or “is at”,
yet the parser sometimes skip the word after it due to an artifact. We excluded language
descriptions parsed with such artifact from the ones used in the end-to-end object search
evaluation.

Figure 7.12: Distribution of collected parsable predicates sorted from most frequent to
least.

Spatial preposition # of FoR annotations

front 121
behind 54

left 51
right 47

Table 7.3: Number of FoR annotations per spatial relation.
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Figure 7.13: The FoR annotator GUI interface. The FoR consists of a front (purple) and
right (green) vector. The target objects are not shown, and the annotator only
has access to the spatial language description, and the map image. This mim-
ics the situation faced by the robot in our task.

7.8.4 FoR Annotation

To collect the FoR annotation, we create our custom annotation tool. The FoR consists of
a front (purple) and right (green) vector that show how the speaker considers the direction
of the ground according to their given spatial description. The interface (Fig 7.13) works
as follows: (1) The annotator first clicks the “Annotate” button. (2) The interface prompts
the annotator the language phrase corresponding to a spatial relation to be annotated (e.g.
“RedBike is in front of EmpireApartments”), which is composed using the parsed
(f, r, γ) tuple. (3) to annotate an FoR, the annotator clicks on the map as the origin of the
FoR, and then clicks on another point on the map as the end point of the front vector. The
vector for right is automatically computed to be 90 degrees clockwise with respect to the
front vector. (4) After annotating one FoR, the annotator clicks “Next” to move on, and the
process starts over again from step (2). In total we have 273 FoR annotations. Table 7.3
shows the amount of annotation per spatial relation. You can download the dataset by
visiting the website linked in the footnote on the first page.
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CHAPTER 8

Dialogue Object Search: Preliminary

Work

Figure 8.1: The motivating scenario for dialogue object search. Imagine one person is
searching for a file at home. Not knowing where it could be, he calls a family
member who knows more. Then, he is able to verbally engage in the dialogue
over the phone while performing search physically. We view dialogue object
search as one route towards realizing such ability to decide what to say and
how to act simultaneously, fundamental for future collaborative robots.
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8.1 Motivation

WE envision robots that can collaborate and communicate seamlessly with humans.
It is necessary for such robots to decide both what to say and how to act, while

interacting with humans. To this end, we introduce a new task, dialogue object search:
A robot is tasked to search for a target object (e.g. fork) in a human environment (e.g.,
kitchen), while engaging in a “video call” with a remote human who has additional but
inexact knowledge about the target’s location. That is, the robot conducts speech-based
dialogue with the human, while sharing the image from its mounted camera. This task is
challenging at multiple levels, from data collection, algorithm and system development, to
evaluation. Despite these challenges, we believe such a task blocks the path towards more
intelligent and collaborative robots. In this extended abstract, we motivate and introduce
the dialogue object search task and analyze examples collected from a pilot study. We then
discuss our next steps and conclude with several challenges on which we hope to receive
feedback.

Humans can act in the physical world (such as walking, looking, or opening a cabinet)
while having a conversation with others. As robots enter homes and care centers, we en-
vision them to have such capability as well when collaborating and communicating with
humans. To achieve this, robots must decide both what to say and how to act towards a
goal. This involves combining task-oriented dialogue systems with decision making under
uncertainty for embodied agents. Traditionally, dialogue systems have involved users in-
teracting with a virtual agent for tasks such as technical support (Mouromtsev et al., 2015),
personal assistance (e.g., Siri) and booking reservations (Wen et al., 2017; Wei et al., 2018).
While recent works have proposed datasets that combine dialogue and dynamic, embodied
decision making (de Vries et al., 2018; Thomason et al., 2020), the investigated problems
over these datasets are limited to prediction tasks that bypass the challenges of evaluating
a conversational embodied agent. For example, the Navigation from Dialog History Task
(Thomason et al., 2020) asks the agent to predict the next navigation action, given a history
of dialogue and past navigation actions. The tourist localization task (de Vries et al., 2018)
asks the system to predict a location given a language description.

Our goal is to enable robots to naturally engage in a dialogue with a human while
completing a task autonomously. We believe a task that captures the sequential nature of
both the dialogue and physical decision making is necessary for in-depth study towards this
goal. We choose to focus on object search, a useful and widely-studied problem (Aydemir
et al., 2013; Kollar & Roy, 2009; Zheng et al., 2021b, 2021a)

8.2 Contributions

The main contribution is we introduce a new task called dialogue object search. From
the pilot study (Sec. 8.4), we observed that participants produced language and behavior
that are more natural using speech, because text-based dialogue requires users to decide
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whether to type or act at every step. Additionally, we summarize the set of intent types
that are observed to succinctly capture the intents behind the unstructured utterances in the
dialogue object search task.

8.3 Dialogue Object Search

A robot is tasked to search for a target object in a human environment (e.g., kitchen) while
engaging in an audio dialogue with a remote human assistant, who possesses inexact prior
knowledge about the target object’s location. In our pilot study, this is given in the form of
a 2D scatter plot (Fig. 8.2). The robot has a mounted RGB-D camera, and shares its view
with the human assistant. We assume the robot and the human assistant have access to two
different sequences of RGB-D images of the scene, which represent their prior experiences
of living in that environment. Target objects are excluded from these images. The robot
must decide what to say and how to act, in order to efficiently find the target object while
naturally interacting and collaborating with the human assistant.

Our inspiration for the above setting comes from the following scenario between two
people living together (family or friends). One person is searching for something, such as
a document or a key, but not sure where it is. They decide to video call the other home
member who is currently out of the house but may have a better idea. They then engage in
a dialogue while the first person conducts the search for the target object. We envision that
in the future, this could happen between a home assistant robot and a human user.

8.4 Pilot Study

To investigate the above task, we first attempted to understand how a human would behave
if they are in the robot’s position. We designed and conducted a pilot study among three
pairs of people (authors’ lab members) using AI2-THOR (Kolve et al., 2017) as the sim-
ulated home environments. In this study, we designate two roles according to the above
problem setting. The Assistant is the person assisting in the process as the robot searches
for a given target object. The Controller is the person who is taking on the role of the
robot. Due to the pandemic, we used Zoom to record the audio and create transcripts of
the dialogue. We implemented a web-based data collection tool where the Controller con-
trols the agent in AI2-THOR through the web interface, and the Assistant has access to a
2D scatter plot of a subset of objects in the scene (Fig. 8.2). Each pair of participants are
assigned three object search trials in one environment. They have 90 seconds to explore
the environment (with target objects removed) and 180 seconds to complete each trial. In
addition to dialogue audio and transcripts, we collected data about the scene per view, the
action executed, and the agent’s groundtruth pose as provided by the AI2-THOR frame-
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Figure 8.2: We conducted a pilot study to understand desirable behavior for the dialogue object search task. Shown here is a
screenshot of the web interface (left) and the dialogue and actions organized onto a timeline (right), for an object search
trial where the target object is Apple. We classified the dialogue utterances into a preliminary set of parameterized
intents, indicated by the colors.



8.5. DISCUSSION & NEXT STEPS

work. We considered a discrete action space of {MoveAhead(0.25m), RotateLeft(45°),
RotateRight(45°), LookUp(30°), LookDown(30°), Open, Close}.1.

Despite the small scale of our pilot dataset, we observed some interesting behaviors
shared between trials. For example, at the beginning of the object search trials the Assistant

would specify the target object and the Controller would confirm. Additionally, as the task
progresses, both roles would describe behaviors, beliefs about the environment and location
of objects, and visual observations. We codified these into a set of preliminary intent types;
some examples are given in the figure above. Using this pilot dataset, we have started to
explore the development of an autonomous agent (Controller), both modular and end-to-
end that can plan actions for this task.

As mentioned in the introduction, we experimented with both speech-based dialogue
and text-based dialogue, using the recording and chat features of Zoom. With speech, par-
ticipants typically engage in frequent back-and-forth, as the Controller controls the agent.
Such exchanges involve discussing, for example, the scene and possible target locations.
Participants report that when using text, the Controller must decide between controlling
the agent in AI2-THOR versus typing in the chat. Consequently, they would try to search
for the object themselves without interacting with the Assistant, who, as a result, finds it
difficult to tell if their input is being considered by the Controller. This suggests collecting
dialogue data through text is unnatural and misaligned with our goal.

8.5 Discussion & Next Steps

Though truthful to the task, our pilot data collection procedure is currently not scalable. We
plan to implement a system that can be deployed on the crowdsourcing platform Amazon
Mechanical Turk (AMT), to pair up Turkers to participate in the task entirely through their
web browsers for accessibility. AMT a powerful platform, yet not designed for multi-user
tasks. Due to audio communication and running AI2-THOR servers, we face a more diffi-
cult situation than Das et al. (2017) who had to implemented a live chatbot on AMT. We
also need solutions to scalable and accurate transcription of the collected audio as well as
intent labling. We seek suggestions for strategies to collect such data at scale. In terms of
evaluation, we believe both experiment with simulated assistants and real human assistants
are necessary. For the simulated assistant, we are considering an oracle agent that com-
municates using template-based language. The goal of this simulated agent is to facilitate
efficient and repeatable evaluations during algorithm development for the embodied dia-
logue agent, which could be a long-term effort. Ultimately, the agent should be deployed
to perform the task with real human subjects. We plan to consider objective metrics for both
object search performance (e.g., success rate and discounted total return and dialogue qual-
ity (Venkatesh et al., 2018), and, eventually, subjective metrics such as naturalness (Hung

1. We first experimented with a rotation angle of 90° following (Gordon et al., 2018; X. Ye & Yang, 2021),
but experienced sudden jumps that are unnatural as felt by the participants. Therefore, we switch to 45°,
also used by some existing works (Wortsman et al., 2019; Qiu et al., 2020)
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et al., 2009). We believe finding solutions to scalable speech-based dialogue data collec-
tion for embodied tasks and plausible evaluation protocol are daunting, yet unavoidable
challenges towards future collaborative robots.

THIS IS THE END OF THIS CHAPTER.
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CHAPTER 9

Conclusion

THis thesis was motivated by the practical challenges for object search and the goal of
making object search an off-the-shelf ability for robots. It argues for using POMDP

to model object search and exploiting structure in the human world and human-robot inter-
action to achieve practical and effective object search systems.

We have provided a few examples in supporting this argument: octrees for 3D multi-
object search, spatial correlations for searching for hard-to-detect objects, and structure
in spatial language for searching with a hint. We were able to demonstrate our proposed
algorithms in realistic simulators and on real robots. Notably, we built GenMOS, the first
robot-independent, environment agnostic system for object search in 3D, and integrated
it with three different robots in different environments. As a preliminary work, we also
identified patterns in the intents behind utterances for dialogue object search.

We have also proposed taxonomies for three main aspects of object search studies:
problem settings, solution methods, and the systems and applied them in the literature
review of more than 125 papers related to object search.

Future Work

Chapter 3 has provided a generic POMDP model for object search, which has been the
parent model for all the POMDP models we developed for specific problems. However,
the problems studied in this thesis are still basic in the sense that they have involved static
target objects and no environment interaction. Achieving generalized object search beyond
the basic setting is the big open problem and ultimate pursuit in this field. Additionally, it
is beneficial to study ways to learn models of the environment which can be used for object
search planning. This is likely more useful for search involving environment interactions.
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CHAPTER 9. CONCLUSION

If the question is whether a generic POMDP for object search model in Chapter 3 is
extensible to handle the additional challenges, there is both potential to explore and fore-
seeable hurdles to worry. In terms of potential, the transition function in the POMDP can
be easily extended to consider motion of target objects. Besides, the high-level LOOK ac-
tion can be extended to be an abstraction over not only navigation-based search actions, but
also manipulation-based, which all serve the purpose of perceiving some part of the envi-
ronment. However, trouble arises as the consequences of manipulation to the environment
may become intractable to model. For example, suppose that a book might be underneath
a bed. In this case, a good way to search underneath the bed is not to bend over and look,
but to find a tool, such as a stick, to sweep underneath the bed. A robot that can reason at
this level faces the challenge of considering consequences of sweeping in the environment.
How to make a robot that can perform search while being aware of the consequence of its
own actions to the environment? This is a valuable direction of future work.

THIS IS THE END OF THIS CHAPTER.
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APPENDIX A

The pomdp_py library

In this appendix, we present pomdp_py, a general purpose Partially Observable Markov
Decision Process (POMDP) library written in Python and Cython. Existing POMDP li-
braries often hinder accessibility and efficient prototyping due to the underlying program-
ming language or interfaces, and require extra complexity in software toolchain to integrate
with robotics systems. pomdp_py features simple and comprehensive interfaces capable of
describing large discrete or continuous (PO)MDP problems. Here, we summarize the de-
sign principles and describe in detail the programming model and interfaces in pomdp_py.
We also describe intuitive integration of this library with ROS (Robot Operating System),
which enabled our torso-actuated robot to perform object search in 3D. Finally, we note
directions to improve and extend this library for POMDP planning and beyond.

1 Introduction

Partially Observable Markov Decision Processes (POMDP) are a sequential decision-
making framework suitable to model many robotics problems, from localization and map-
ping (Ocaña et al., 2005) to human-robot interaction (Whitney et al., 2017). Early ef-
forts in developing tools for POMDPs attempt to separate solvers from domain description
by creating specialized file formats to specify POMDPs (Cassandr, 2003; APPL, 2009),
which are not designed for large and complex problems. Among libraries under active
development, Approximate POMDP Planning Toolkit (APPL) (Somani et al., 2013) and
AI-Toolbox (Bargiacchi, 2014) are implemented in C++ and contain numerous solvers.
However, the learning curve for these libraries is steep as C++ is less accessible to current
researchers in general compared to Python (Virtanen et al., 2020). POMDPs.jl (Egorov et
al., 2017) is a POMDP library with a suite of solvers and domains, written in Julia. Though
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promising, Julia has yet to achieve a wide recognition and creates language barrier for many
researchers. POMDPy (Emami et al., 2015) is implemented purely in Python. Yet with
an original focus on POMCP implementation, it assumes a blackbox world model in its
POMDP interface, limiting its extensibility. Finally, a promising toolchain is to use Rela-
tional Dynamic Influence Diagram Language (RDDL) (Sanner, 2010) to describe factored
POMDPs and solve them via ROSPlan (Cashmore et al., 2015), recently demonstrated for
object fetching (Canal et al., 2019). Nevertheless, using this set of tools adds overhead
of using a classical fluent-based planning paradigm, which is not required to describe and
solve POMDPs in general.

This leads to our belief that there lacks a POMDP library with simple interfaces that
brings together both accessibility and performance. We address this demand by present-
ing pomdp_py, a framework to build and solve POMDP problems written in Python and
Cython (Behnel et al., 2011). It features simple and comprehensive interfaces to describe
POMDP or MDP problems, and can be integrated with ROS (Quigley et al., 2009) intu-
itively through rospy. In the rest of this appendix, we first review POMDPs, then illus-
trate the design principles and key features of pomdp_py, including integration with ROS.
Finally, we note directions to improve and extend this library, in hope of cultivating an
open-source community for POMDP-related research and development. The documenta-
tion of pomdp_py is available at: https://h2r.github.io/pomdp-py/html/. Tutorials
on example domains can be found in the documentation. This library is currently actively
developed as we continue our POMDP-related research.

2 POMDPs

POMDPs (Kaelbling et al., 1998) model sequential decision making problems where the
agent must act under partial observability of the environment state. Refer to Background
(Section 2.2.2, page 25) for a formal introduction of POMDPs.

Solvers. Most recent POMDP solvers are anytime algorithms (Zilberstein, 1996; Ross
et al., 2008), due to the intractable computation required to solve POMDPs exactly (Madani
et al., 1999). There are currently two major camps of anytime solvers, point-based methods
(Kurniawati et al., 2008; Shani et al., 2013) which approximates the belief space by a set of
reachable α-vectors, and Monte-Carlo tree search-based methods (Silver & Veness, 2010;
Somani et al., 2013) that explores a subset of future action-observation sequences.

Currently, pomdp_py contains an implementation of POMCP and PO-UCT (Silver &
Veness, 2010), as well as a naive exact value iteration algorithm without pruning (Kaelbling
et al., 1998). The interfaces of the library support implementation of other algorithms;
We hope to cultivate a community to implement more solvers or create bridges between
pomdp_py and other libraries.

Belief representation The partial observability of environment state implies that the
agent has to maintain a posterior distribution over possible states (Thrun et al., 2005). The
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agent should update this belief distribution through new actions and observations. A tabular
belief representation requires nested iterations over the state space to update the belief,
which is computationally intractable in large domains. Particle belief representation is a
simple and scalable belief representation which is updated through matching simulated and
real observations exactly (Silver & Veness, 2010). Different schemes of weighted particles
have been proposed to handle large or continuous observation spaces where exact matching
results in particle depletion (Sunberg & Kochenderfer, 2018a; Garg et al., 2019).

pomdp_py does not commit to any specific belief representation. It provides implemen-
tations for basic belief representations and update algorithms, including tabular, particles,
and multi-variate Gaussians, but more importantly allows the user to create their own new
or problem-specific representation, according to the interface of a generative probability
distribution.

3 Design Philosphy

Our goal is to design a framework that allows simple and intuitive ways of defining
POMDPs at scale for both discrete and continuous domains, as well as solving them ei-
ther through planning or through reinforcement learning. In addition, we implement this
framework in Python and Cython to improve accessibility and prototyping efficiency with-
out losing orders of magnitude in performance (Behnel et al., 2011; Smith, 2015). We
summarize the design principles behind pomdp_py below:

• Fundamentally, we view the POMDP scenario as the interaction between an agent

and the environment, through a few important generative probability distributions (π,
T,O,R or blackbox model G).

• The agent and the environment may carry different models to support learning, since
for real-world problems especially in robotics, the agent generally does not know the
true transition or reward models underlying the environment, and only acts based on
a simplified or estimated model.

• The POMDP domain could be very large or continuous, thus explicit enumeration of
elements in the spaces should be optional.

• The representation of belief distribution is decided by the user and can be customized,
as long as it follows the interface of a generative distribution.

• Models can be reused across different POMDP problems. Extensions of the POMDP
framework to, for example, decentralized POMDPs, should also be possible by build-
ing upon existing interfaces.
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4 Programming Model and Features

The basis of pomdp_py is a set of simple interfaces that collectively form a framework for
building and solving POMDPs.

When defining a POMDP, one first defines the domain by implementing the State,
Action, Observation interfaces. The only required functions for each interface are
__eq__ and __hash__. For example, the interface for State is simply1:

class State:

def __eq__(self, other):

raise NotImplementedError

def __hash__(self):

raise NotImplementedError

Next, one defines the models by implementing the interfaces TransitionModel,
ObservationModel, etc. Note that one may define a different transition and reward model
for the agent than the environment (e.g. for learning). One also defines a PolicyModel

which (1) determines the action space at a given history or state, and (2) samples an action
from this space according to some probability distribution. Implementing these models
involves implementing the probability, sample and argmax functions. For example, the
interface for ObservationModel, modeling O(s′, a, o) = Pr(o|s′, a), is:

class ObservationModel:

def probability(self, observation, next_state, action):

"""Returns the probability Pr(o|s',a)."""

raise NotImplementedError

def sample(self, next_state, action):

"""Returns a sample o ~ Pr(o|s',a)."""

raise NotImplementedError

def argmax(self, next_state, action):

"""Returns o* = argmax_o Pr(o|s',a)."""

raise NotImplementedError

def get_all_observations(self, *args, **kwargs):

"""Returns a set of all possible

observations, if feasible."""

raise NotImplementedError

It is up to the user to choose which subset of these functions to implement, depending on
the domain. These interfaces aim to remind users the essence of models in POMDPs.

1. Note that the code snippets here are modified or shortened slightly for display purposes. Please refer to
the code on github: https://github.com/h2r/pomdp-py/
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Figure A.1: (1) Core Interfaces in the pomdp_py framework; (2) POMDP control flow im-
plemented through interaction between the core interfaces.

To instantiate a POMDP, one provides parameters for the models, the initial state of the
environment, and the initial belief of the agent. For the Tiger problem2 (Kaelbling et al.,
1998), for example,

s0 = random.choice(list(TigerProblem.STATES))

b0 = pomdp_py.Histogram({State("tiger-left"): 0.5,

State("tiger-right"): 0.5})

tiger_problem = TigerProblem(..., s0, b0)

Here, TigerProblem is a POMDP whose constructor takes care of initializing the Agent and
Environment objects, and is instantiated by parameters (omitted), initial state and belief.
Note that it is entirely optional to explicitly define a problem class such as TigerProblem
in order to program the POMDP control flow, discussed below.

To solve a POMDP with pomdp_py, here is the control flow one should implement that
contains the basic steps:

1. Create a planner (Planner), i.e. a POMDP solver.

2. Agent plans an action a ∈ A through the planner.

3. Environment state transitions st → st+1 according to its transition model.

2. https://h2r.github.io/pomdp-py/html/examples.tiger.html
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4. Agent receives an observation ot and reward rt from the environment.

5. Agent updates history and belief. ht, bt → ht+1, bt+1, where ht+1 = ht(at, ot).

6. Unless termination condition is true, repeat steps 2-5.

The Planner interface is as follows. The planner may be updated given a real action and a
real observation, which is necessary for MCTS-based solvers.

class Planner:

def plan(self, agent):

"""The agent carries the information:

Bt, ht, O,T,R/G, pi, needed for planning"""

raise NotImplementedError

def update(self, agent, action, observation):

"""Updates the planner based on real action

and observation. Updates the agent belief

accordingly if necessary. """

pass

Code Organization. In a more complicated problem such as the Light-Dark domain
(Platt Jr et al., 2010) or Multi-Object Search with fan-shaped sensors (Wandzel et al., 2019),
it may be tricky to organize the code base and be consistent across different problems. Be-
low we provide a recommendation of the package structure to use pomdp_py to guide the
development and facilitate code sharing:

- domain/

- state.py // State

- action.py // Action

- observation.py // Observation

- ...

- models/

- transition_model.py // TransitionModel

- observation_model.py // ObservationModel

- reward_model.py // RewardModel

- policy_model.py // PolicyModel

- ...

- agent/

- agent.py // Agent

- ...

- env/

- env.py // Environment

- ...

- problem.py // POMDP
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The recommendation is to separate code for domain, models, agent and environment,
and have simple generic filenames. As in the above tree, files such as state.py or
transition_model.py are self-evident in their role. The problem.py file is where the
specific implementation of the POMDP class is defined, and where the logic of control flow
is implemented. Refer to the Multi-Object Search example in the documentation for more
detail3.

Object-Oriented POMDPs. OO-POMDP (Wandzel et al., 2019) is a particular kind of
factored POMDP that factors the state and observation spaces into a set of n objects. For
instance, Pr(s′|s, a) =

∏

i Pr(s
′
i|s, a), i ∈ {1, · · · , n}. The belief space is also factored,

which allows the belief space to grow linearly instead of exponentially as the number of
objects increases. Each object is of a certain class and has a set of attributes. The values
of these attributes constitute the state of an object. In pomdp_py, we provide interfaces
to implement OO-POMDPs, which serves as an example of extending the basic POMDP
framework to create another class of model. These interfaces include OOState, OOBelief,
OOTransitionModel, etc.

Integration with ROS. ROS (Quigley et al., 2009) is an open-source system that builds a
network connecting computing stations and robots, where nodes interact with one another
through publishing messages or making service requests. It is typical to separate nodes that
manage resources and controls the robot from nodes that runs sophisticated algorithms.
This is the case of pomdp_py as well. The POMDP-related computations can be done on a
node that implements the POMDP control flow (see the six steps above). Inside this node,
when an action is selected by the Planner (step 1), the node can publish a message to the
nodes for robot control so that the robot can execute the action (step 2). The environment
state automatically updates in the real world as a result of that action (step 3), and the node
receives the sensor measurements or other forms of observations through subscribed topics
(step 4), and performs belief update (step 5). This process is repeated until termination
condition is met (step 6). ROS provides a package rospy which eases the integration of
the POMDP control flow with the robot system.

5 Summary

We present a POMDP library, named pomdp_py, that brings together accessibility to pro-
grammers through Python as well as performance through Cython, with an intuitive de-
sign and straightforward integration with ROS. The programming model is designed to en-
courage organized development and code sharing within a community, and it has potential
to support research besides POMDP planning, including reinforcement learning, transfer
learning, and multi-agent systems.

3. https://h2r.github.io/pomdp-py/html/examples.mos.html
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